GRAPHICS PROCESSING UNIT-BASED COMPUTER-AIDED DESIGN
ALGORITHMS FOR ELECTRONIC DESIGN AUTOMATION

by

Yiding Han

A dissertation submitted in partial ful lIment
of the requirements for the degree

of
DOCTOR OF PHILOSOPHY
in

Electrical Engineering

Approved:

Dr. Koushik Chakraborty Dr. Sanghamitra Roy

Major Professor Committee Member

Dr. Chris Winstead Dr. YangQuan Chen

Committee Member Committee Member

Dr. Dan Watson Dr. Mark R. McLellan
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2014

Copyright ¢ Yiding Han 2014

All Rights Reserved

Abstract

Graphics Processing Unit-Based Computer-Aided Design Algrithms for Electronic Design

Automation

by

Yiding Han, Doctor of Philosophy
Utah State University, 2014

Major Professor: Dr. Koushik Chakraborty
Department: Electrical and Computer Engineering

This dissertation presents research focusing on reshapintpe design paradigm of elec-
tronic design automation (EDA) applications to embrace the computational throughput of
a massively parallel computing architecture. The EDA indudry has gone through major
evolution in algorithm designs over the past several decade delivering improved and more
sophisticated design tools. Today, these tools provide a dical platform for modern inte-
grated circuit (IC) designs composed of multi-billion transistors. However, most of these
algorithms, although showcasing tremendous improvementén their capabilities, are based
on a sequential Von Neumann machine, with limited or no abilty to exploit concurrency.
While such limitation did not pose any signi cant end e ect in the past, the advent of
commodity multicores during the beginning of this decade ceated a need to embrace con-
currency in many elds, including EDA algorithms. This need is now fast gaining urgency
with the recent trends in the emergence of the general purpascomputation on graphics
processor units (GPU).

Through algorithmic overhaul, and novel solution space exjoration strategies, this
research has shown a concrete path in which inherently seqogal problems can benet

from the massively parallel hardware, and gain higher comptation throughput. Broadly,

\Y
two important EDA topics are discussed in this dissertation: (1) A oorplanner using a
GPU-based simulated annealing algorithm, and (2) a global outer framework using GPU
architecture and a fast congestion analysis framework. Bdt topics aim to use GPU as
a testbed for high throughput computation. Optimization st rategies are studied for the
GPU implementations. The GPU-based oorplanning algorithm is able to render 4-166X
speedup, while achieving similar or improved solutions comared with the sequential algo-
rithm. The GPU-based global routing algorithm is shown to achieve signi cant speedup
against existing state-of-the-art global routers, while celivering competitive solution quality.
The proposed methodology of a design paradigm shift for seauntial EDA algorithms has a

profound impact on the e ciency and design quality of future IC design ow.

(144 pages)

Public Abstract

Graphics Processing Unit-Based Computer-Aided Design Algrithms for Electronic Design

Automation

by

Yiding Han, Doctor of Philosophy
Utah State University, 2014

Major Professor: Dr. Koushik Chakraborty
Department: Electrical and Computer Engineering

The electronic design automation (EDA) tools are a speci ¢ £t of software that play
important roles in modern integrated circuit (IC) design. T hese software automate the
design processes of IC with various stages. Among these s&gj two important EDA design
tools are the focus of this research: oorplanning and globlrouting. Speci cally, the goal
of this study is to parallelize these two tools such that ther execution time can be signi -
cantly shortened on modern multi-core and graphics processg unit (GPU) architectures.
The GPU hardware is a massively parallel architecture, enating thousands of independent
threads to execute concurrently. Although a small set of EDAtools can bene t from using
GPU to accelerate their speed, most algorithms in this eld ae designed with the single-core
paradigm in mind. The oorplanning and global routing algor ithms are among the latter,
and di cult to render any speedup on the GPU due to their inher ent sequential nature.

This work parallelizes the oorplanning and global routing algorithm through a novel
approach and results in signi cant speedups for both tools implemented on the GPU hard-
ware. Speci cally, with a complete overhaul of solution spae and design space exploration,
a GPU-based oorplanning algorithm is able to render 4-166Xspeedup, while achieving sim-

ilar or improved solutions compared with the sequential algrithm. The GPU-based global

Vi
routing algorithm is shown to achieve signi cant speedup aginst existing state-of-the-art
routers, while delivering competitive solution quality. | mportantly, this parallel model for
global routing renders a stable solution that is independenbfrom the level of parallelism.
In summary, this research has shown that through a design padigm overhaul, sequential
algorithms can also bene t from the massively parallel arclitecture. The ndings of this
study have a positive impact on the e ciency and design quality of modern EDA design

ow.

Vil

This dissertation is lovingly dedicated in memory of my father, Fei Han, and of my
grandfather, Zhenyi Chen, who each inspired my life throughtheir strength, faith, and
love.

viii

Acknowledgments

I would like to express my very great appreciation to my advier, Dr. Chakraborty,
for his insightful advice, generous nancial support, and patient guidance throughout my
entire PhD research. Without his motivation and insights this work would have never been
complete. Also, | would like to thank Dr. Roy for assisting me in many publications, her
useful critiques of this research, as well as her teachingshich helped me tremendously in
understanding the EDA algorithms. Also, | would like to express my deep gratitude to all
of my committee members, Dr. Chen, Dr. Winstead, and Dr. Wasbn, for their valuable
comments on this research, and the patience to work with me ean with the barrier of long
distances.

I would like to thank various student members of the Bridge Lab for their constant
support, encouragement, as well as making Bridge Lab such algasant and rewarding place
to work. Specically, | would like to thank Vilasita for her a ssistance in the initial work
of GPU-based oorplanning; Dean for his valuable contribution and insights for the GPU-
based global routing work; and Saurabh for the opportunity to work on the project involving
timing analysis of NBTI aging e ects. | wish also to acknowledge the help provided by
Kshitij Bhardwaj, Jason Allred, Hu Chen, Manzi Dieudonne, Rajesh JS., Harshitha Pulla,
Brian Clu, and Shayan Taheri.

I would like to express my great appreciation to the ECE depatment and all of the
sta members, for o ering me this opportunity of PhD research, as well as the nancial
assistance towards my tuition. | would like to o er my special thanks to Dr. Moon for
helping me out in many tough situations. | am particularly gr ateful for the assistance given
by Mary Lee Anderson and Tricia Brandenburg, who have helpedme through numerous
drafts and formatting of the dissertation. | would also like to extend my thanks to Trent
Johnson and Scott Kimber for providing technical support and maintaining the computer

laboratory.

iX
Last, but not least, special thanks should be given to my lovey wife, Susanna, and

everyone in our families, for their support and encouragema throughout my study.

Yiding Han

Contents
Page
PAY o151 = (1 SRS | |
(S10] o] [[oR2N 0511 7= To! A '
Acknowledgments :::iciiiinuiiiiirr ity i
[IES o] B o1 o] (=1 S A D (1Y)
List of Figures ::::iciricirriiiiiiiiiiinniiiininiiiiniiiiininooxi
Acronyms @ iiiloXix
1 Introduction :::::ciiiiiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiino 1
1.1 EDA and Emerging GPU Computing Paradigm 1
1.1.1 Overview of Modern EDA Design Flow 2
1.1.2 Physical Design of EDAFlow 3
1.1.3 GPUInEDADesignFlow. 4
1.2 Motivation 5
1.3 Contributions of this Research 7
1.3.1 A Floorplanner Using GPU-Based Simulated Annealing Agorithm . 8
1.3.2 A GPU-CPU Hybrid Global Router 9
1.3.3 A Fine Grain Concurrency Model for Global Routeron GPU 11
1.3.4 Congestion Analysis 2
2 Literature Survey and Related Work N 1
21 EDAONnGPU 13
2.2 Floorplanning and Parallelization 14
2.3 Global Router: Current Methodology 15
231 MazeRouting. e 15
2.3.2 PatternRouting 16
2.4 Global Routing: Routing Framework 16
24.1 Rip-upandRe-route (RRR). 17
2.4.2 Integer Programming e 17
2.5 Congestion Analysis e 18
3 General Purpose GPU Computing A K
3.1 Evolution of GPU General Purpose Computing 19

3.2 Programming Model: CUDA 20

4 GPU-Based Floorplanning L Lliiiiiiiiiiiiiiiiiiiiiiiiiiiin 25
4.1 Floorplanning e 25
411 B*Tree 25
4.1.2 Simulated Annealing B
41.3 GPUDeSIgNISSUeS v e e 27
4.2 GPU Floorplanning: Algorithm Overview and Speci cation 28
4.2.1 Algorithm Specication 28
4.2.2 Implementation: CPU-GPU Dataow 29
4.3 Preliminary Results 30
4.3.1 Methodology 30
4.3.2 Results 32
4.3.3 Where Does Time GoinaGPU? 33
4.4 Performance Optimization 34
4.4.1 Limiting Data Copy to Shared Memory (OPT1) 34
4.4.2 Parallelize Device to Shared Memory Copy (OPT2) 35
4.4.3 Memory Access Coalescing (OPT3) 35
444 Results e 38
445 Qualityvs. Speedup 39
4.5 Algorithm Restructuring to Improve Solution Quality 40
451 Algorithm Overview 41
452 Implementation e 41
453 Results 42
4.6 Adapting Annealingin GPU Lo 45
4.7 Design Space Exploration o 46
4.7.1 Solution Selection Through Binary Tree Reduction (BTR) 46
4.7.2 Annealing Diversity in GPU Threads (ADT) 47
4.7.3 Dynamic Depth (DD) e 48
474 Results 49
4.8 CoNnClusion 51
5 GPU-Based Global Routing A - V24
5.1 Global Routing e 2
5.2 Problem Denition 54
5.3 Related Works on Global Routing 54
5.4 Tackling GRP with GPU-CPU Hybrid System 57
5.4.1 Wire Length Distribution of GRP 57
542 GPU-CPUHybrid 58
5.5 Overview of GPU-CPU Global Routing 59
551 Objective e 60
552 DesignFlow. 60
5.5.3 Global Routing Parallelization 60
5.6 Enabling Net Level Parallelism in Global Routing. 61
5.6.1 Challenge in Parallelization of Global Routing 61
5.6.2 Achieving NLC 62
5.7 Scheduler 63

5.7.1 Scheduler Overview e 64

5.7.2 Nets Data Dependency 65
5.7.3 Net Dependency Construction 66
5.7.4 Implementation and Optimization 68
5.8 Implementation 69
5.8.1 Maze Routing Implementatonon GPU 69
5.8.2 GPU Memory Arrangement o0 72
5.8.3 Scheduler 74
5.8.4 Congested Region Identication (CRI) 75
5.8.5 Bounding Box Expansion 00 76
5.8.6 Workload Distribution Between GPU and CPU 78
59 Results. 79
591 GPUand CPURouter. 80
5.9.2 Comparison with NTHU-Route 2.0 81
5.10 Conclusion 3
GPU-Based Global Router with Fine-Grain Parallelism criiiiiiiiiis 85
6.1 Motivation 85
6.1.1 Insu cient Exploitable Concurrency 86
6.1.2 Degradation of Routing Quality 87
6.2 Parallelism on SteinerEdge oL 89
6.2.1 Improving the Exploitable Concurrency 89
6.2.2 Data Isolation for GPU Router 91
6.3 GPU Framework Overview i @
6.3.1 Congestion Analysis]
6.3.2 Scheduling e 93
6.3.3 GPURouting 94
6.3.4 Commit Topology e 94
6.4 A*Searchon GPU 94
6.4.1 Routing Grid Textures e 95
6.4.2 Shared Memory Management 95
6.4.3 AsSIStance ProCessSes i i e e e 96
6.5 Experimental Results. 97
6.6 Conclusion 10
Congestion Analysis : oo oo o102
7.1 Problem Formulation 103
7.2 Motivation 103
7.3 Orthogonal Congestion Correlation 106
7.4 Routing Technique 108
75 Results. e 109
7.6 Conclusion 11
Conclusion and Future Work A I B
8.1 Conclusion 1B
8.2 Future Work 114
8.2.1 Parameter Tuning of Global Router 114

8.2.2 Tackling Limitations of BoundingBox 115

Table

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.1

5.2

5.3

54

5.5

6.1

Xiv

List of Tables

Page
Throughput optimized oorplanning algorithm. 30
CPU and GPU SpecCs. o v i e e e e e e e e e 31

Preliminary results. Number of modules in a benchmark isindicated in
parentheses. e 32

Tradeo in solution quality and speedup (G92). D and B represent the depth
and breadth, respectively. 45

Tradeo in solution quality and speedup (Tesla C1060). Dand B represent

the depth and breadth, respectively. 45
Comparison of using BTR, BTR+ADT, and BTR+DD. All result s are in

G92 machine with B=16, D=96,and =2. 49
CPU run time of GSRC hard-block benchmarks. 49

Tradeo in solution quality and speedup. B and D represen the breadth and
depth, represents the time of CPU moves. Results are from G2 GPU. . 50

Tradeo in solution quality and speedup. B and D represen the breadth and
depth, represents the time of CPU moves. Results are from Tesla C1060

GPU. . . e 50
GPU Lee algorithm notations. 73
Algorithm notations. 78

Wire length and run time comparison with NTHU-Route 2.0 on over ow-free
benchmarks. 82

Wire length and over ow comparison with NTHU-Route 2.0 on hard-to-route
tesStCases. 82

Speedup comparisonin RRRstage. 83

Routing performance comparison between the CPU and GPUauters. The
comparison focuses on solution from the RRR stage. 98

6.2

6.3

7.1

XV

Routing performance comparison between two state-offie-art routers. Only
RRR stage run time is counted to rule out the e ects of pre- and post-routing

stages from these routers. e 99

Normalized speed up and wire length comparison betweerh¢ GPU router

and the other routers. The percentage of wire length increas is denoted as

WL e 99
111

Figure

11

1.2

3.1

3.2

3.3

4.1
4.2

4.3

4.4
4.5

4.6

4.7

4.8

XVi

List of Figures

Page

The EDA design ow for standard cell consists of many stags, typically
including logic synthesis, physical design, and veri caton tools. 3

Evolution of EDA algorithms in GPU platforms. The gure ¢ ompares the
speedup achieved in NVIDIA GPU architectures relative to a squential
processor (measured in giga- oating point operations), wih the reported

speedups from the rst generation GPU-enabled EDA applicatons. 6
CUDA thread hierarchy is con gured in a Grid-Block-Thre ad model to allow
programmer managing large quantity of parallel threads. 21
CUDA grid can scale across di erent con gurations of GPU hardware, and
achieve the best possible workload balancing during runtire. 22

CUDA abstracts the GPU memory subsystem in a hierarchichmanner. Its
di erent memory components exhibit diverse characteristics, which should
be taken into extensive consideration for performance opthization of a GPU

application. e 23
Floorplanning with CPU. 26
Floorplanning in CPU-GPU. 29
Data ow between CPU and GPU. Active thread is shown with a darker

shading within a thread block. 31
Execution time breakdown forami49. 33
GPU execution time breakdown forami49. 34

Parallelizing data movement between shared memory and elice. Active
threads on streaming processors (SP) are shown with darketsding within
athread block. 36

Speedup comparison with concurrent threads to copy data 36

(A) Non-coalesced device memory access. Only four thrda are active in the
transaction. (B) Coalesced device memory access. Sixteerath elements are
copied inone transaction. e 37

4.9

4.10

411

412

4.13

4.14

4.15

5.1

5.2

5.3

54

5.5

5.6

5.7

5.8

GPU execution time breakdown forami49 after optimization. 38
Speedup achieved using G92. e 39
Speedup achieved using Tesla C1060.0 ... 40
Solution quality vs. speedup tradeo. 40
New CPU-GPU oorplanning algorithm. 42

Depth vs. breadth: Solution quality and speedup for di erent benchmarks. 43
One iteration of binary tree reduction. 48

Wire length distribution indicates co-existence of lage number of long and
short wires. Wire length is measured in Manhattan distance. 58

Conceptual picture of computational bandwidth and latency of existing com-
puting platforms. 59

Global router design ow: The top left section is initialization phase while
bottom left is post-routing phase. Steps in these two sectins are also present

in other CPU-based routers. The right section is RRR. This se&tion is en-
hanced with a scheduler. The contributions from this work are highlighted

in dark shading background. oL 61

Parallel router must have consistent view of resources(A) Routings before
RRR. (B) and (C) Viewpoint of each thread, which unknowingly allocates
con icted resources. (D) An over ow is realized at the end of RRR when
both threads track back. o o 62

Collision awareness alone can hurt routing solution: (A Four-thread router
processing a particular congested region, one net per threla (B) Routing
solution generated via collision-aware algorithm. Some r&urces are wasted
due to overhead of collision awareness because threads arsaburaged to
route on cells (black, green, yellow, and blue cells) that wes previously used

by another thread. (C) With proper scheduling, only one thread is processing

this particular region and some of the resources are recyale Remaining
threads are routing other congested areas on the chip (not giwn). 63

Overview of GPU-CPU router concurrent subnets (snet) béng distributed
to GPUand CPU task pools. 64

Routing problem with nets overlapping each other. 67

Results after the 1st iteration: (A) Coloring of tiles: bigger nets dominate
ownership over smaller ones. OnhA and D can be routed together because
other nets are dependent orD. (B) Net dependencies are derived from the
colormap. e 68

59

5.10

5.11

5.12

5.13

5.14

5.15

6.1

6.2

6.3

6.4

6.5

7.1

7.2

7.3

7.4

XViii

Results after the 2nd iteration: (A) After D and A are routed, netsC, B, F
and G can be routed together because they have no dependencies.)(Blore
detailed dependencies are revealed inthegraph.. 68

Path nding in a GPU: The propagation starts from the source node. The
breadth- rst search Ils up the entire search region, and continues until all
frontiers are exhausted. Then the router back traces from tle target node to

nd the shortest weighted path. 70
GPU routing overview: Each thread block nds route for asingle set of source

and sink. The routing is done locally on the shared memory of &h thread
block. 71
Workload distribution with di erent task window. With t he increasing size

of parallel window, workload is easier to be balanced amonggs<CPUs and
GPU, but it also comes at higher overhead. 75
Directional expansion algorithm: Bounding box adaptively expands in the
directions with the highest congestion. 77
Runtime comparison between CPU A*Search and GPUBFS. 80
Speedup of GPU BFS over CPU A*Search. 81

Exploitable concurrency in ISPD2007, ISPD2008, ISPD201, and DAC2012
benchmark suites. The y-axis is normalized to the strict moatl of ISPD2007. 87

Net level concurrency serializes the subnets of the sameet to rebuild the

net topology around obstacles, illustrated by the gray area. 88
Subnet level concurrency promotes concurrency, but rekes the false data
dependency, leading to degradation of solution quality. 89

The net is decomposed into ve Steiner edges that do not hae any shared
path. Steiner edges 1 and 4 are re-routed in parallel in an asghronous
MANNEI. o o e e e 90

The main GPU routing framework. 92

Comparing congestion heat map and orthogonal congesticheat maps. Bench-

mark adaptec2 from ISPD 2007 suite., 104
OCC heat map after initial routing. Heat map highlights m ajor hard-to-route

ArEAS. e e e 107
Di erent types of moves to be generated on the net topology 110

OCC heat map of newblue7 Benchmark before and after DOC alysis. . . 112

EDA

ASICs
FPGA
GPU
API
ILP

GPGPU
SIMD
SIMT
SP
CAD
VLSI
CUDA
GRP
RRR

ILP
NLC
FGC
RSMT

Acronyms

electronic design automation
integrated circuit
application-speci ¢ integrated circuits
eld-programmable gate array
graphic processing unit
application programming interface
integer linear programming
integer programming

general purpose GPU

single instruction multiple data
single instruction multiple thread
streaming processor

computer aided design
very-large-scale integration
compute uni ed device architecture
global routing problem

rip-up and re-route

integer programming

integer linear programming
net-level concurrency

ne-grain concurrency

rectilinear Steiner minimal tree

XiX

Chapter 1
Introduction

As the design complexity of modern integrated circuit (IC) aggregates exponentially,
the electronic design automation (EDA) tools, which provide a critical platform for computer-
aided design, have become increasingly important. Modern BA tools designs dedicate
considerable e orts to improve the capability of handling complex design constraints and
very large size circuits within limited design period. Most of these algorithms, although
showcasing tremendous improvements over the past decadese based on a sequential Von
Neumann machine, which have very little ability to exploit concurrency.

Due to the advent of commodity multi-cores during the beginning of this decade, paral-
lel computing has gradually become the major computationalparadigm to replace sequen-
tial computing. In many data and arithmetic intense elds, i ncluding EDA, this shift of
paradigm calls for an embrace of concurrency in algorithm deigns. Broadly, there are two
aspects to this shift: (1) parallelize the application to take advantage of the concurrency
provided in modern hardware; (2) understand the performane characteristics of the parallel
architectures for algorithmic and implementational optimization. Interestingly, this shift is
now fast gaining urgency with the recent trends in the emergace of the general purpose

computation on graphics processor units (GPU) [1].

1.1 EDA and Emerging GPU Computing Paradigm

Modern GPUs are inherently concurrent designs, with severathousands of processing
units within a single GPU. They not only demonstrate tremendous computation bandwidth
(orders of magnitude improvement from commodity multicores), but also the ability to allow
non-graphics applications to harness their computing prowess. It is the latter development

that will make signi cant impact in EDA algorithms, as algor ithms designed for GPUs in

the next decade are poised to bear little resemblance to thexésting body of EDA tools.
This section brie y outlines the design ow of modern EDA tooIs (Section 1.1.1), draws
the emphasis of this research in the physical design categpiof EDA tools (Section 1.1.2),

and presents the current trend of GPU computing in EDA tools (Section 1.1.3).

1.1.1 Overview of Modern EDA Design Flow

The EDA design ow is a combination of computer-aided designtools, which are used
to accomplish the design of an integrated circuit (IC). EDA tools are specialized for di erent
IC design methodologies, such as full custom design, apptiion-speci ¢ integrated circuits
(ASICs) standard cell design, and eld-programmable gate aray (FPGA) designs, etc.

This work addresses EDA tools that are specic for the ASICs sandard cell design
ow. During the ASICs ow, several stages of EDA design are u®d to bring an IC from
register-transfer level (RTL) to graphic data system stream format (GDSII). RTL models a
synchronous digital circuit with an abstraction of the hardware, while de ning the signals,
registers, and logical operations performed by the circuit The EDA tool chain realizes the
RTL circuit using components from ASICs standard cell libraries, and generates the output
of the IC design in a GDSII format, which plots the physical layout of the circuit ready for
chip fabrication.

An ASICs design ow can be further categorized as the followng three classes: logic
synthesis, physical design, and veri cation. Figure 1.1 ilustrates this classi cation and
the relations among these categories of tools. Starting wit the logic synthesis tools, the
goal of this stage is to translate the RTL speci cation into netlist, which consists of IP
blocks, gates and interconnects, etc. These components asubsequently arranged and
assembled by the physical design tools. The nal design outpt is printed in GDSII format
for fabrication. The veri cation tools are typically inter leaved throughout the entire design
process to ensure the IC meeting various design speci catitss. The veri cation includes
many standalone processes, including logic simulation, ning analysis, formal veri cation,
signal integrity check, and design rule checking, etc.

This work will mainly focus on design tools from the physicaldesign family. Speci cally,

4)

EDA flow for standard cell design

:} RTL Description
1

Logic Synthesis
v
:} Netlist

l
Physical Design

floorplanning

Verification

:} Physical Layout

- J

Fig. 1.1: The EDA design ow for standard cell consists of mary stages, typically including
logic synthesis, physical design, and veri cation tools.

it studies tools for oorplanning and global routing of an IC . The following sections will

further describe the roles of these physical design tools ahaddress their design challenges.

1.1.2 Physical Design of EDA Flow

The body of this research focuses on the physical design tabf EDA family. A typical
physical design ow can be broadly divided into the placemen and routing phase. The
di erence between these two phases is that the placement fomes on nding the physical
locations IC components, such as transistors and IP blocksyhile the routing phase focuses
on the wiring among these components. The design ow starts wh placement of the IC
components and ends with successful routing of wires that egmect the placed components.

The placement phase itself has multiple stages, typically ensisting of oorplanning,
global placement, and detailed placement. Each stage workwith an abstraction of the

physical layout in a top-down manner. Floorplanning divides the chip components into

4

relatively large size blocks and tries to nd a close-to-optmal con guration to lay down
these blocks within the chip area. Global placement nds geeral locations for all gates and
modules, and detailed placement places them at exact locains on the IC chip.

Similarly, the routing phase is also multi-staged, including global routing and detailed
routing. The routing phase is the most complex one throughoti the EDA design ow,
since it must obey all design and electrical rules of an IC. A rulti-staged routing ow
alleviates the complexity of the problems. First, global rauting phase connects circuits on
a coarse-grain level, which identi es and corrects largeale congestion and routing issues.
Then, detall routing takes the coarse-grain solution, and ays down the ne-grain physical
interconnect on IC circuits. Typically, the interconnects are built as metal tracks and vias,
hence their electrical characteristics must be taken into onsideration to avoid problems
such as crosstalk, antenna e ects, etc. As the complexity of C design grows, new design
constraints are introduced to facilitate features such as mlti-layer interconnects, multi-
pattern lithography, and make routing extremely di cult.

In modern designs where routability becomes the primary obcle, the usage of global
routing is increasingly critical. To mitigate the routabil ity issue, it is common to utilize
congestion analysis tools to reveal routability issues inltie early design stages, such as oor-
planning and placement. With the early congestion informaton, designers can rearrange
oorplan and massage placement of IC components to avoid a gentially di cult-to-route
design. Interestingly, modi ed global routing engine can be used as a congestion analyzer,
leading to a trend of integrating and interleaving global router with other tools in modern

physical design ow.

1.1.3 GPU in EDA Design Flow

The advent of GPU computing has successfully rendered imprement in runtime e -
ciency of many EDA design tools. Compute intensive algoritims like fault simulation, power
grid simulation and event-driven logic simulation have be@& successfully mapped to GPU
platforms to obtain signi cant speedups [2{5]. Recently, Liu and Hu proposed a gate sizing

and threshold voltage algorithm optimized for GPUs [6]. Corg and Zou [7] use GPU com-

5

puting on a force-direct algorithm for global placement, which renders impressive speedup
over the CPU sequential implementation. One key similarity in all these previous works is
the presence of a xed common topology/data structure acros parallel threads that are fed
with separate attributes for concurrent evaluation (e.g. distinct gate sizes and threshold
voltages for a single circuit topology, distinct input patt erns for a single circuit, distinct
localization of components placement). The unmodi ed topdogy is highly amenable to the
single instruction multiple thread (SIMT) style in GPUs, as it does not require frequent
data modi cation and reuse.

The adaptation of GPU platform for EDA algorithms is, however, at an early stage.
The focus of this work is to remodel oorplanning and global routing algorithms for GPU
computing, which pioneers the GPU computation research. Seci cally, this is the rst work
in open literature to apply GPU computing for oorplanning a nd global routing algorithms.
Importantly, neither of these algorithms exhibit distinct topology for parallel computing
as in the existing paradigm of GPU computing research. This hallenge dictates novel
context sensitive design space and exploration space expéiions to overhaul the paradigm

of existing sequential algorithms, formulating the main body of this research.

1.2 Motivation

In contrast to several GPU adapted applications, a great nunier of EDA algorithms
still struggle to keep pace with the performance improvemenof GPU hardware platform,
as illustrated in Figure 1.2. Typically, unlike applicatio ns with abundant data-parallel
operations, these EDA applications have limited ability to explore concurrency with their
irregular data structures and data dependencies. Even img@mented on the GPU platform,
the performance boost achieved in such category is considssly lower [7, 8].

Among the above mentioned category are some of most computanally intensive EDA
applications in the very large scale integrated (VLSI) cirauit design ow. Today's aggres-
sive technology scaling introduces many additional constints in physical designs of VLSI
circuits. Such explosion in design rules fundamentally inteases the complexity of the prob-

lems such as placement and routing, which are two of the mostitne consuming stages of

Speedup

Fig. 1.2: Evolution of EDA algorithms in GPU platforms. The gure compares the speedup
achieved in NVIDIA GPU architectures relative to a sequential processor (measured in
giga- oating point operations), with the reported speedups from the rst generation GPU-
enabled EDA applications.

Year

VLSI physical design. However, these application typicaly adopt intrinsically sequential
algorithms that are originally designed for a single-core echitecture. Without altering the
algorithms themselves, these applications can hardly benefrom the extra concurrency
created by modern parallel architectures.

These EDA applications face a two-fold challenge. On the ondiand, the drastically
increased problem size and complexity dictates more commated algorithms to ensure de-
sign quality. But these needs also prolong the design cyclena ultimately lead to delay
of time-to-market; on the other hand, with the single-core performance coming at a halt,
the performance of the single threaded EDA tools can hardly knet from the hardware
performance progression. As a result, without the ability to scale in parallel environment,
these EDA applications can become bottle-neck of the VLSI dgign ow.

The key research question isvhether it is possible to completely overhaul the
aforementioned EDA algorithms, and reshape their design space exploration to
better utilize the throughput of massively parallel computing platforms . This de-
sign philosophy elevates this research from existing genakpurpose GPU computing works,

which mainly focus on inherently parallel applications. Through a design paradigm shift,

7

this research has shown that intrinsically sequential algathms and applications can gain
higher computational throughput using the massively paralel hardware. Importantly, al-

though GPU is used as a testbed for high throughput computaton, the proposed method-
ologies are developed in a generic manner widely applicablen parallel architectures at

large.

1.3 Contributions of this Research

This research focuses on reshaping the design paradigm of Blapplications to embrace
the computational throughput of a massively parallel compuing architecture. Through al-
gorithmic overhaul, and novel solution space exploration gategies, this research has shown
a concrete path in which inherently sequential problems canbenet from the massively
parallel hardware, and gain higher throughput. The designsof the GPU algorithms are
generic for massively parallel architectures, making themapplicable to other throughput
computing platforms for future EDA applications.

Publications made during the period of this research are lied as follows:

Journal Papers

Exploring High Throughput Computing Paradigm for Global Ro uting, Yiding Han,
Dean Michael Ancajas, Koushik Chakraborty, and Sanghamita Roy, IEEE Transac-

tions on Very Large Scale Integration SystemsAccepted

Design and Implementation of a Throughput Optimized GPU Floorplanning Algo-
rithm, Yiding Han, Koushik Chakraborty, Sanghamitra Roy an d Vilasita Kunta-
mukkala, ACM Transactions on Design Automation of Electronic Systems Volume

16, Issue 3, No. 23, June 2011, Pages 23:1{23:21

Conference Papers

A Global Router on GPU Architecture, Yiding Han, Koushik Cha kraborty, and Sang-

hamitra Roy, IEEE International Conference on Computer Design 2013, Pages 74{80

DOC: Fast and accurate congestion analysis for global routig, Sanghamitra Roy,
Yiding Han, Koushik Chakraborty, IEEE 30th International Conference on Computer
Design, 2012, pages 508{509

Exploring High Throughput Computing Paradigm for Global Ro uting, Yiding Han,
Dean Michael Ancajas, Koushik Chakraborty, Sanghamitra Ry, Proceedings of IEEE/ACM
International Conference on Computer-Aided Design November 2011, San Jose, Pages

298{305

Optimizing Simulated Annealing on GPU: A Case Study with IC Floorplanning, Yid-
ing Han, Sanghamitra Roy and Koushik Chakraborty, 12th IEEE International Sym-
posium on Quality Electronic Design (ISQED), March 2011, Pages 1{7

A GPU Algorithm for IC Floorplanning: Speci cation, Analys is and Optimization,
Yiding Han, Koushik Chakraborty, Sanghamitra Roy and Vilasita Kuntamukkala,
24th IEEE/ACM International VLSI Design Conference , 2011, Pages 159{164

1.3.1 A Floorplanner Using GPU-Based Simulated Annealing Algorithm

This work proposes a fundamentally di erent approach of expbring the oorplan so-
lution space. Several performance optimization technique are demonstrated for this algo-
rithm in GPUs. This research is published in the proceedingsof VLSID-11 [9], ISQED-11
conferences [10]. A journal version is published in the TODAS-11 journal [11].

A novel oorplanning algorithm for GPUs is proposed. Floorplanning is an inherently
sequential algorithm, far from the typical programs suitable for SIMT style concurrency
in a GPU. In this work, a fundamentally di erent approach of ex ploring the oorplan
solution space is proposed. It illustrate several performace optimization techniques for

this algorithm in GPUs. To improve the solution quality, a co mprehensive exploration of

9

the design space is presented, including various techniqago adapt the annealing approach
in a GPU. Compared to the sequential algorithm, the proposedtechniques achieve 6-188X
speedup for a range of MCNC and GSRC benchmarks, while deliveng comparable or better

solution quality. The contributions of this work are:

An algorithm to perform oorplanning on a GPU machine. This i s the rst work on

GPU-based oorplanning.

An in-depth analysis of the proling in dierent GPU componen ts, and illustrate

several optimizations for the GPU oorplanning algorithm.

A modi ed algorithm based on the speedup vs quality analysisto improve the solution

quality, and show detailed results of the modi ed algorithm.

Based on algorithmic foundation, a comprehensive design sige exploration of the so-
lution space is presented. The analysis spans from detaildareadth and depth analysis,
adapting the annealing technique for GPU, and dynamic seldion and exploration of

the solution space.

1.3.2 A GPU-CPU Hybrid Global Router

This is the rst work on utilizing GPUs for global routing. It explores a hybrid GPU-
CPU high-throughput computing environment as a scalable alernative to the traditional
CPU-based router. A novel parallel model is proposed for roter algorithms that aims to
exploit concurrency at the level of individual nets. This work is published in the proceedings
of ICCAD 2011 conference [12]. Its journal version is accepd by the TVLSI-12 journal.

With aggressive technology scaling, the complexity of the pbal routing problem is
poised to rapidly grow. Solving such a large computational poblem demands a high
throughput hardware platform such as modern GPUs. This work explores a hybrid GPU-

CPU high-throughput computing environment as a scalable alernative to the traditional

10

CPU-based router. Anet level concurrency (NLC) model is introduced. NLC is a novel par-
allel model for router algorithms that aims to exploit concurrency at the level of individual
nets.

To e ciently uncover NLC, a Scheduleris designed to create groups of nets that can
be routed in parallel. At its core, the Scheduler employs a neel algorithm to dynamically
analyze data dependencies between multiple nets. Such angalrithm can lay the foundation
for uncovering data-level parallelism in routing: a necesary requirement for employing
average of 4X speedup over NTHU-Route 2.0 with negligible lss in solution quality. The

contributions of this works are:

An execution model that allows cooperation of the GPU and theCPU to route mul-
tiple nets simultaneously through NLC. The GPU global router uses a breadth rst
search (BFS) heuristic while the CPU router uses A* search rating. Together, they
provide two distinct classes in the routing spectrum. The hgh-latency low-bandwidth
problems are tackled by the CPU, whereas the low-latency hilg-bandwidth problems
are solved by the GPU. This classi cation is the key to e cien tly tackle the complexity

increase of the global routing problem on massively parallehardware.

A scheduler algorithm to explore NLC in the global routing problem. The scheduler
produces concurrent routing tasks for the parallel global outers based on net depen-
dencies. The produced concurrent tasks are distributed to hie parallel environments
provided by the GPU and multi-core CPU platforms. The scheduer is designed to
dynamically and iteratively analyze the net dependencieshence limiting it computa-

tional overhead.

A Lee algorithm based on breadth- rst search path nding on a GPU. This algorithm
utilizes the massively parallel architecture for routing and back tracing. The approach
is able to nd the shortest weighted path, and achieves high omputational throughput

by simultaneously routing multiple nets.

11

1.3.3 A Fine Grain Concurrency Model for Global Router on GPU

This is the rst work that utilizes GPU alone for global routi ng, without o oading any
routing workload to the CPU. Based on the net-level concurrecy model proposed in the
previous GPU-CPU hybrid concept, this work extended the corturrency model to a ne-
grain level, which signi cantly improves the exploitable parallel workloads. A multi-agent
GPU routing engine is developed based on A* search algorithmThis work is published in
the proceedings of ICCD 2013 conference [13].

In the modern VLSI design ow, global router is often utilized to provide fast and ac-
curate congestion analysis for upstream processes to impre the design routability. Global
routing parallelization is a good candidate to speedup its untime performance while de-
livering very competitive solution quality. This work rst study the cause of insu cient
exploitable concurrency of the existing NLC model, which h& become a major bottleneck
for parallelizing the emerging design problems. It mitigaies this limitation with a novel ne
grain parallel model, with which a GPU-based multi-thread global router is designed. Ex-
perimental results indicate that the parallel model can e edively support the GPU-based

global router, and deliver stable solutions. The contribution of this work includes:

A concurrency model that exploits parallelism on the Steine edge level. The main
reason of the limited exploitable concurrency is identi ed to be a false data depen-
dency in the NLC parallel model. The Steiner edge-based netatomposition scheme

e ectively mitigates this issue, and increases the exploitéale concurrency.

A routing engine on GPU architecture to allow multi thread gl obal routing based
on an A* search multi-source multi-sink maze routing algorthm. This A* search is
designed broadly based on an existing A* search GPU impleméation, but specialized

for global routing optimizations.

The router is designed with the ability to work with the recent routability-driven
benchmarks. Experimental results indicate successful pailelization with the GPU-
based router, which renders a deterministic solution. Morever, the run-time of the

proposed global router is up to 3.0X faster than that of the NCTUgr2 [14].

12

1.3.4 Congestion Analysis

This work presents a fast and accurate congestion analysisobl at the global routing
stage. It focuses on capturing the di cult-to-solve congedion in global routing designs. The
proposed framework identi es the routing congestion usinga novel orthogonal congestion
correlation (OCC) factor, which identi es the hard-to-rou te hot-spots. A key contribution
of this work is a fast global router to minimize congestion caised by long nets and accurately
reveal the distribution of hard-to-route spots due to high density short nets. The global
router uses a dynamic representation of net to allow fast toplogy transformation. The
proposed framework can evaluate the routability of a placerent solution, and be utilized
to aid the placer for a congestion-aware design.

The focuses of this research is in introducing new technigueto improve the accuracy
of congested region detection, as well as reducing the rumtie overhead of a congestion

analyzer. The major contributions are as following:

An accurate over ow identi cation approach based on a novel orthogonal congestion
analysis. The analysis uses a new metric to model the di cultto-route region by
studying the nature of di cult-to-route problems. The prop osed metric is shown to

be able to pinpoint problematic regions with high accuracy.

A set of dynamic edge moves that can e ciently resolve congeon. As the e ciency
of routing engine plays a key role for congestion analysis,cenplex routing algorithm
is avoided to allow extremely fast analysis. The dynamic edg moves provides a fast

yet accurate routing methods for congestion analysis.

13

Chapter 2
Literature Survey and Related Work

A comprehensive literature survey is undertaken to build the foundation of this re-
search. The relevant areas of this study includes the currédnadaptation of GPU for EDA
tools, the existing body of research for oorplanning and its parallelization, previous works
on global routing and its parallel schemes, and the advent omodern congestion analysis
tools. To serve the purpose of a literature survey, the folling sections are organized as
follows: Section 2.1 outlines the previous works that utilze GPU for EDA applications to
render speedup; Section 2.2 reviews the current oorplanmg technologies and previous
parallelization schemes; Section 2.3 lists a collection aéxisting global routing techniques;
Section 2.4 visits the current frameworks used for global roting; Section 2.5 gives a survey

on the congestion analysis research.

2.1 EDA on GPU

Some EDA algorithms are able to enjoy the adaption to the GPU patform. Compute
intensive algorithms like fault simulation, power grid simulation and event-driven logic simu-
lation have been successfully mapped to GPU platforms to oltin signi cant speedups [2{5].
Recently, Liu and Hu proposed a gate sizing and threshold véhge algorithm optimized for
GPUs [6]. One key advantage in many of these previous works igie unmodi ed topol-
ogy/data structure across parallel threads, which make then highly amenable to the SIMT
style in GPUs. More recently, GPU optimized algorithms for irregular computing patterns
like sparse matrix vector product and breadth rst graph tra versal have been proposed [8].
These algorithms can be applied to certain EDA problems likestatic timing analysis and
force directed placement that use sparse matrix operationsCong and Zou also optimized

the force-directed placement algorithm on GPU platforms []. Frishman and Tal used GPUs

14

to optimize force directed graph layout problem, where cerain steps required simulated an-
nealing [15, 16].

In contrast, the oorplanning and global routing algorithm s pose severe challenges
as they both involve a chain of dependent modi cations to the data structures. There is
little similarity between existing GPU work and the focus of this research. For example,
the layout problem allowed partitioning the graphs, and calculating the desired objective
in each partition. In IC oorplanning, no such partitioning is possible during objective
calculation as a given move can impact nearly all possible bicks in the oorplan. Due to
such fundamental di erences in problem structure and resuling restrictions, their proposed
algorithm with optimization techniques are not applicable for the GPU-based oorplanning

research.

2.2 Floorplanning and Parallelization

The modern xed-outline oorplanners are typically based on simulated annealing al-
gorithms [17{19]. The simulated annealing is a heuristic that applies random moves to
a oorplan to approach for an optimal solution. It is shown recently by Zeng and Chen
that searching agents such as random walk for optimal searcks fundamentally linked with
fractional dynamics [20], which can provide insight for future design and optimization of
oorplanning algorithms.

Typically the existing xed-outline oorplanning problem s target to minimize overall
area and half-parameter wire length. Cong et al. present a @rplanner to also consider
thermal distribution of 3D ICs [21]. To improve the e ciency of modern oorplanner, a fast
oorplanner for multilevel design is presented by Chen et al [22], Chen and Chang present
a fast simulated annealing based on B*-tree representatioril9]. However, all of the above
oorplanning algorithms are based on sequential architectires.

There has also been some works on parallel simulated anneaadj, albeit not on oorplan-
ning. Kravitz and Rutenbar [23] presents strategies for impementing simulated annealing-
based standard cell placement on shared memory multiprocesrs. They propose two or-

thogonal approaches to exploit parallelism: decomposingisgle move and compute multiple

15

moves simultaneously. Done by Rose et al. [24], a SA based si@dard cell placement algo-
rithm generates and investigates di erent coarse placemers to exploit parallelism. Another
parallel simulated annealing is done by Ram et al. [25]. The athors propose to exploit par-
allelism by expanding the search space. Each processor imitilually performs SA on a
solution space. However, algorithmic exposition for IC oaplanning, with optimization

challenges in GPU.

2.3 Global Router: Current Methodology

The global routing problem is NP-hard [26]. Therefore, heuistics are applied to reach
the approximate optima of the global routing solution. In general, the algorithms used
to solve global routing can be categorized into two classes{l) sequential; (2) concurrent.
The sequential algorithm is typically based on a rip-up and e-route (RRR) scheme, which
rips-up the interconnects that cause overuse of routing resurces and re-route their paths
individually. The routing resources claimed by the previowsly routed paths have determin-
istic a ects on the decisions made to route the later paths. Fa this reason, nets in general
must be routed in an explicit sequential order.

The concurrent algorithm often utilizes the integer programming approaches, which
attempt to route all nets concurrently. The global routing p roblem is modeled with f0,
1g-integer linear programming (ILP) problem that selects soltions out of candidate paths
that optimize the desired global objectives. Such approachs typically possess better global
information to the problem, hence can reach a much closer agpximation to the optima
than the sequential approach. However, in a run time compason, the concurrent algorithms
are generally signi cantly slower.

Routing techniques solve the fundamental problem in globalouting of nding the least
costly path to connect two vertices on a rectilinear grid map Current routing techniques

can be roughly categorized into two classes: (1) maze rout (2) pattern routing.

2.3.1 Maze Routing

Maze routing was rst introduced by Moore [27]. The core proedure of maze routing

16

has two stages: propagation and back-tracing. The propagén phase creates a wave from
the source node, and spreads out the wave on a grid map to seardor sink node. Once
found, the back-tracing stage identi es the least costly pdah in a reverse direction connecting
sink to source node.

Several algorithms have been proposed to realize maze rong for VLSI global routing
problem, among these are Lee algorithm [28], Hadlock's algihm [29], Dijkstra's algo-
rithm [30], and extensions of the Dijkstra's algorithm, such as the A* search algorithm [31].
These algorithms have signi cantly enhanced maze routingm memory allocation and run
time, although maze routing's main procedure remains intat.

A key advantage of maze routing is its exibility in accommodating zigzag shaped
solutions, which enables the router to avoid complex obstdes in a routing grid. However,
the maze routing technique is generally costly in run time wih large scale modern designs.
Techniques such as bounding-box [32] and wire length bounderouting [14] are common

enhancements to alleviate long run time stress.

2.3.2 Pattern Routing

Pattern routing highly restricts the shapes of the searchig paths to obtain speedup
over maze routing technique. The patterns in which the sears paths are specied are
typically L-shape, Z-shape, and C-shape routes, all limithng the number of bends within the
search region. In general, pattern routing can identify a pah with exceptional speed, but

it also results in inferior solution quality.

2.4 Global Routing: Routing Framework

A routing framework typically de nes the methodology with w hich a global router
iteratively \improves" the global solution. The goal of the routing framework is to remove
physical constrains violations, such as congestion and css-talks, etc., while maintaining
an approximation to the optimal global cost, such as the totd wire length and via counts,
etc. As mentioned earlier, current routing frameworks can ke roughly classi ed to the RRR

based sequential approach and the IP-based concurrent appach.

17

2.4.1 Rip-up and Re-route (RRR)

The most commonly applied framework is the Rip-up and Re-Rote scheme, for it has
a much better trade-o between solution quality and run time . In each iteration of RRR,
all nets are visited in a speci c order. Nets with violations in their paths are ripped-up and
re-routed, altering the routing resources available for tre subsequent nets. Such sequential
procedure creates a long chain of dependencies among the setAs explained before, the
RRR scheme heavily relies on the order in which the nets are sited. Several existing
approaches have focused on improvement of the net orderingotachieve better solution
quality [33{40].

McMurchie and Ebeling have proposed a negotiation-based RR routing to mitigate
the congestion issue [36]. Although their work focuses on ld-programmable gate array
(FPGA) routing, a similar negotiation based technique has keen applied to several mod-
ern academic global routers to e ectively reduce congestiorj32, 34,41, 42]. Typically, the
negotiation-based RRR scheme keeps track of history-baseedge weights. Once an edge is
found with consistent congestion throughout several iterdions, it is assigned with a signif-
icantly higher cost. Such strategy encourages the global rder to generate detours around

heavily congested regions.

2.4.2 Integer Programming

The integer programming (IP) framework solves the routing problem at a global scale.
Instead of sequentially improving individual net, the IP-based framework solves multiple
nets concurrently. Typically, each net is initially routed with multiple instances of solution
candidates. The integer linear model then selects the bestambination from all candidates
to optimize the global design objective. In each iteration d the IP solver, more accurate
net topology candidates are generated, gradually leadinghte overall routing solution to the
global optima.

The IP-based approach has several advantages over the RRR.hEnks to the vision of
a global solution, the integer programming approach is inheently superior to the sequential

approach in routing solution quality. Also, its concurrent framework frees the algorithm

18

from the constraints of net ordering, allowing great potential for parallelization. However,
these advantages also come at a great cost. The IP-based aarches are often extremely
computationally intensive. For a time-driven design, the prolonged run time nearly renders
the IP-based approach prohibitive [43]. As a compromise to alution quality, the IP model
can be integrated into a RRR framework and solve problems wit much smaller scale [44,45],

thereby occupying much shorter run time.

2.5 Congestion Analysis

Congestion analysis tools have undergone considerable imgwements to predict the
routability of a design. Probabilistic congestion predictions are rst introduced to pro-
vide feedback of routability information to the upstream processes [46{48]. However, the
probabilistic analysis can be inaccurate in modern designpt9]. Newly proposed congestion
analysis tools, such as CGRIP [45], typically use a fast glodl router engine under strict
timing or wire length enclosure to highlight the routabilit y problems in a placement design.
Speci cally, this enclosure is enforced by providing a xed bounding-box to each net and
prohibits long detours. Consequently, the congestion angkis reveals thetrue congestion
that will stresses the router in later design stages. In addion, several recent works have
shown that an integration between the placer and a fast globhrouter can improve solution
routability [50{52]. Within this integration, placers use techniques such as cell bloating to
mitigate congestion discovered by the fast global router. herefore, the tool chain can ef-
fectively address routability issues from the upstream preesses, and signi cantly accelerate

the overall design convergence.

19

Chapter 3

General Purpose GPU Computing

3.1 Evolution of GPU General Purpose Computing

GPU architecture has several revisions. It started out as a pre graphic rendering
hardware. The early GPU architecture were exclusively degined to exploit parallelism of
graphics applications. Although limited con gurability w as enabled to allow various graph-
ics rendering e ects, the GPU architecture was still designée as a xed-function processor.
The graphics pipeline excelled at three-dimensional (3D) aphics but little else. Even so,
designers with extensive knowledge of graphics APl and GPU ipeline explored the possi-
bility of utilizing the GPU hardware for general purpose computing tasks. A few scienti ¢
applications realized their implementation on the GPU [53] which rendered unprecedented
speedup (more than 100X) over their original sequential impementation on CPUs. These
events were the advent of the movement called general purpesGPU (GPGPU) computing.

While achieving signi cant performance with the GPU hardware, the challenge of pro-
gramming the GPU for real-world application was immense. Hstorically, such practice
required the use of graphics programming APIs like OpenGL ad Cg to program the GPU.
Data involved during the computation must be carefully crafted as vertices and textures
to tonto the GPU pipeline. Little data structure support wa s provided, and no random
address access was allowed. Even the commonly used controbic in a CPU-based appli-
cation were absent in the GPU architecture. These factors lnited the accessibility to the
tremendous capability of GPUs for general purpose computig.

Fortunately, nowadays the GPU architecture has evolved inb a much more programmable
processor, which not only excels in the 3D image rendering ks, but is also accessible by

a large number of general purpose tasks. The architecture dhe GPU transformed from a

20

x-function graphics pipeline to a uni ed multi-processor with enormous arithmetic capa-
bility. The rst ever of such GPU architecture was designed by AMD for the Xenos GPU
in the XBox 360 game consoles. The rst GPU in a PC system usinguni ed processor was
named G80. Developed by NVIDIA, the unied device architecture of G80 uses a large
number of identical computational elements to accomplish arious tasks in a pipeline. The
bene t for 3D graphics rendering is better load-balancing. Because the programmable units
now divide their time among vertex, fragment, and geometry ©omputation, both coarse and
ne grain parallelism are exploited. The model is easily sckable to tailor for diverse tasks.
For GPGPU users, the benets of the unied shader architecture is much clearer.
Rather than the previous approach in which computational tasks had to be divided across
multiple xed-function hardware, the uni ed shader archit ecture allows programmers to
directly target the many core processor. Providing supportfor random address access, inte-
ger arithmetic, and control logic, etc., the uni ed shader architecture renders an important

paradigm shift in the way GPU hardware is used for general pupose application.

3.2 Programming Model: CUDA

With the GPU hardware evolution facilitating general purpo se computing, it is also
critical to present a programming model for GPU. The programmable units of the GPU
follow a single instruction multiple data (SIMD) model. Each instruction has e ect on mul-
tiple data elements in parallel. As the shader and general prpose programs become more
complex, it is sometimes preferable to allow di erent threads to take di erent processing
paths through the same instruction. This notion leads to a mae general single instruction
multiple threads (SIMT) model, which is used by the programming model proposed by
NVIDIA, namely CUDA.

CUDA de nes the thread model and memory model of a GPU based aplication.
Threads are managed by CUDA in a hierarchical and scalable maner. The CUDA thread
hierarchy is best explained with Figure 3.1, where threads g grouped into thread blocks.
The size of each thread block is user speci ed, and typicallyimited to 512 threads. Threads

inside the same block may synchronize with barriers, but canot do so with threads in

21
another block. The thread blocks are grouped into a grid. Theexecution of the thread

blocks is independent from each other, and can take any ordesr run simultaneously. There

is no hardware synchronization mechanism among the thread Ibcks. The only way to

synchronize the thread blocks is through re-launching the &rnel, which behaves as an
implicit barrier. Each kernel launch corresponds to one gril. The GPU hardware allows

multiple grids to concurrently occupy a single device.

The thread model of CUDA also provides transparent scalabity. Thanks to the in-

dependence among all thread blocks, a grid can scale acrossyanumber of parallel cores.
Figure 3.2 illustrates this concept. A grid with eight thread blocks can be mapped to a dual-

core or quad-core GPU, resulting run time that is reversely poportional to the size of the

Grid 1
‘ Kernel 1]——'y; Block Block Block
L : ' (0, 0) 1,0 2,0
¥ b
Block _’ Block | Block
(0, 1) w1y @
g ?‘_
= : :
< Grid 2’.") |
Kemelz eyl [/ ‘ H ;" |
Lt 2 3 |
& ! i)
» A 'lr—ll-——
¥ i 4 _ | | | Y |
Block (1, 1)

Fig. 3.1: CUDA thread hierarchy is con gured in a Grid-Block -Thread model to allow
programmer managing large quantity of parallel threads.

22

device. The GPU family produced by NVIDIA often uses the samecore design throughout
the entire generation, but each product di ers in the number of cores and memory band-
width to cover the high-end to low-end spectrum. The scalablity of CUDA programming
model ensures the performance of CUDA program on any productvithout the need for
software recon guration.

The memory model of CUDA is an abstraction of the memory subsgtem of GPU
architecture. As evidence in Figure 3.3, similar to the thread model, the GPU memory
subsystem is also arranged in a hierarchical manner. The mbsbundant memory is the
o -chip device memory, which is slow in access latency, but wde in bandwidth. The on-chip
memory is much more scarce, but is addressable and has signantly lower access latency.
User controllable cache structures are also present in GPU emory system, including tex-
ture cache and constant cache. These above memory structuseare built-in with the CUDA
abstraction layer to allow user intervention with ease. However, the utilization of di erent

GPU memory subsystems has a profound impact on the performare characteristic of a

Multithreaded QUDA Progam

25Ms GPU with 4 SMs

5M1 S5MOD 5M1

5M2 5M2

BERE :
EEEE

f

£

w

Fig. 3.2: CUDA grid can scale across di erent con gurations d GPU hardware, and achieve
the best possible workload balancing during runtime.

23

GPU application, and should be treated with the utmost care.

CUDA's model also provide linkages between the GPU and syste memory. Typi-
cally, with the exception of embedded systems and speciakrl game consoles, the memory
subsystem of a GPU is separated from the system memory. CUDA @grams typically do
not directly access the system memory, although such access possible through mapping
a block of page-locked system memory to the address space dfet GPU device memory.
More commonly, data communication between GPU and system mmory is done with ex-
plicit copy through the PCI-E interface.

From a programmer's perspective, CUDA encompasses a C-likteanguage for GPU

programming, and a set of APIs to establish communication baveen the CPU (the host)

Grid
Block (0, 0) Block (1, 0)

-

Thread (0, 0) | Thread (1, 0)

-

Thread (0, 0) Thread (1, 0)

Fig. 3.3: CUDA abstracts the GPU memory subsystem in a hierachical manner. Its
di erent memory components exhibit diverse characteristics, which should be taken into
extensive consideration for performance optimization of aGPU application.

24

and the GPU (the device). As a programming model, CUDA adoptsa language that
essentially is a super set of C, adding some features from C++An experienced programmer
can quickly adapt to the CUDA language environment. CUDA's additional semantics and
symbols provide facilities to assist programmers, who do nohave the knowledge of GPU
internal architecture, to utilize the GPU speci ¢ features, such as thread synchronization,
local and global memory addressing, etc. CUDA host side APE provide utilities such
as data copy between system and GPU memory, GPU kernel con gwation, and kernel
launching, etc. These APIs are called by the CPU applicatiors, and interact directly with

the GPU device driver.

25

Chapter 4

GPU-Based Floorplanning

4.1 Floorplanning

With VLSI designs becoming increasingly complex, the oordanning stage of physical
design is critical in determining the quality of design [1954]. Typically, a large number of
candidate oorplans are evaluated before converging to a god solution. Therefore, one of
the critical design issues is choosing an e cient data stru¢ure for oorplan representation,
which can ease the operations and management of oorplans. iong several alternatives,

one of the most widely adopted representations is a B* tree.

4.1.1 B* Tree

B* tree is an ordered binary tree data structure that inherit s all desirable properties
from the O tree and comes with additional advantages [54]. WHe handling non-slicing
oorplans, the B* tree overcomes the irregularity in tree structure, typical in O trees.
B* tree has a 1-1 correspondence with its admissible placemida compacted placement,
where individual modules cannot move down or left [55]. Thisattributes certainty to the
operational complexity involved with B* trees and enables exible realization allowing usage
of either static or dynamic memory structure. On choosing a fatic structure, operations
like insertion, deletion, and search can be done in linear the.

Typically, simulated annealing, a generic probabilistic gtimization algorithm, is ap-
plied on the B* tree for oorplanning. The dierent moves that can explore the entire
solution space in a simulated annealing based oorplanningalgorithm using B* trees are:
(1) rotating a module; (2) moving a module to a new location; and (3) swapping two mod-

ules. Each of the three moves are primarily based on the insgon and deletion operations of

26

the B* tree data structure, which automatically preserves the validity of the new oorplan.

4.1.2 Simulated Annealing

Figure 4.1 illustrates the simulated annealing algorithm wsing a B* tree. The algorithm
starts with an initial B* tree representation of the oorpla n and randomly chooses and
applies one of the three moves to the tree. Next, the objecti® of the newly generated B*
tree (area and/or wire length) is evaluated and the move is acepted or rejected based on
the simulated annealing schedule. These steps are repeatsdveral times until a satisfactory

solution is obtained.

B*Tree |«
¥
Apply random move |+
w
Evaluate
obj. function
e T Eae Mo
e Accept move? o
Yes
WModify 8" Tree
B T
..-_—_-:__H__Eh_]. function aptl'l'llzetf'?;_____,_,_ =
Yes

cr T,
Terminate Process

Fig. 4.1: Floorplanning with CPU.

27

4.1.3 GPU Design Issues

A GPU is a massively multi-threaded multiprocessor system hat excels in single-
instruction multiple-thread (SIMT) style concurrency. Th reads in a GPU are organized in
a two-level hierarchy. The lower level consists of a group oprogrammer speci ed threads
forming a block. The higher level consists of a collection oblocks forming a grid. The GPU
hardware facilitates extremely fast context-switching beween threads, thereby allowing ef-
cient overlap of long latency operations of one thread with computations from another.
For NVIDIA GPUs, the CUDA programming model provides a platf orm for non-graphics
applications to exploit the computation bandwidth of the GP U.

The key to e ectively using the CUDA interface is understanding the memory hierar-
chy of a GPU. The GPU memory hierarchy consists of: (1) deviceor global memory, (2)
shared memory, and (3) texture memory. Unlike in commodity nulti-core systems, pro-
grammers can explicitly manage data in these memories. Cafeally managing the program
data structures in these memory modules is paramount for speding up applications using
the GPU.

The device memoryis the global memory for the GPU, which is accessible from all
the GPU threads, as well as the CPU. It has high access bandwitl but its access latency
is high. Shared memoryis the local memory that is shared by all the threads in a block
Therefore, changes made in this memory are visible to all thehreads within a block, but
invisible to other blocks. Its access latency is low, but itsstorage space is limited, usually
16KB per block. Texture memory is for explicitly declared read-only data, and is accessila
to all threads. Since it is also automatically cached, the léency of accessing such memory
is low.

At a high-level, the CPU uses the GPU as an accelerator for a sgci ¢ function, known
as thekernel function. The CPU typically will send a kernel function to the GPU, alo ng with
data for manipulation. All threads execute the same kernel finction. However, depending
on the kernel speci cation, di erent threads may perform di e rent data manipulation as

desired by the programmer.

28

4.2 GPU Floorplanning: Algorithm Overview and Speci cation

This section presents an overview of GPU oorplanning algoithm with the detailed
speci cations. As mentioned earlier, to parallelize the oorplanning algorithm, it is essential
to break the dependency chain. Analyzing the general sequéal framework from Figure
4.1, it is observed that multiple concurrent moves can be aplied on a given oorplan.
Fundamentally, this strategy breaks the dependency chaingn the sequential algorithm,
and explores the solution space in a completely di erent maner.

Based on the above insight, Figure 4.2 presents a high-levelverview of a parallel oor-
planning algorithm. The initial oorplan represented as a B* tree is selected in the CPU.
Several concurrent GPU threads are then launched, after copng the necessary state from
the CPU to the GPU. B is the number of parallel threads launched to perform concurent
moves, and the later sections (Sections 4.4 and 4.4.5) wilufther explore its signi cance
towards performance later . Each parallel GPU thread applis a separate move, and eval-
uates the objective function for the resulting oorplan. Consequently, several moves are
concurrently evaluated in the GPU. The CPU then inspects the objective evaluations, and
accepts one of the moves evaluated during the concurrent pls&. The algorithm repeats
these steps unless a stopping criteria is met. While concepally simple, there are several

key design issues that needs to be addresses throughout thest of this chapter.

4.2.1 Algorithm Speci cation

Table 4.1 presents a detailed algorithmic speci cation forthe proposed GPU oorplan-
ning algorithm. The initial phase (steps 1-5) is executed ornthe CPU. The CPU creates an
initial B* tree implementation and copies the B* tree and its attributes to the GPU device
memory. The CPU subsequently launched8 parallel thread blocks in the GPU.

The next phase (steps 6-10) is the concurrent phase in the GPUEach block copies
the B* tree to its own shared memory. Since the tree is modi edin place (shared memory)
when a move is applied, only one thread can perform a move wiih a thread block. After
computing the new oorplan, this thread evaluates the objedive of the updated oorplan

and stores the objective in the device memory.

29

A
CPU B* Tree «
A 4 ‘/\‘
M
Evaluate move—> | Evaluate move—> Evaluate move—> | Evaluate move—>
Accept/Reject Accept/Reject Accept/Reject Accept/Reject
Breadth = B
GPU l 1 EEEEEEEN l 1
Update result Update result Update result Update result
\ M
Pick best
Modify B* tree
CPU _,---f-’l'“w--.%_
e e No
—-::'_f__m_ohj. function optimized? =
Yes
4 il T inat 9
A - erminate pracess -

Fig. 4.2: Floorplanning in CPU-GPU.

Finally, in the last phase (steps 11-14), theB objectives are copied back from the
device memory to the host memory. The CPU now picks the best mee from the candidate
objectives, and makes a single update on its B* tree applyinghe best move. Steps 3-14
are repeated until the stopping criteria is satis ed. The stopping criteria used is identical
to the sequential version (exploring a xed number of moves hat depend on the number of

modules).

4.2.2 Implementation: CPU-GPU Data ow

Figure 4.3 shows the data ow between the CPU (host) and the GRJ (device). In step
1, the B* tree structure of a oorplan along with a few circuit related constants are copied
to the device memory. The constants consist of details of a naule (e.g. width and height)
that do not change during runtime. Subsequently, multiple thread blocks, each consisting

of a single thread, copy the tree to their own shared memoriegoncurrently (step 2). In

30

Table 4.1: Throughput optimized oorplanning algorithm.

ALGORITHM GPU _Floorplanning:

Input :

1. A given circuit with n modules

Output :

1. A oorplan that optimizes objective (area, wire length)

Begin

Read input circuit

Construct initial oorplan in a B* tree form

while stopping criteria not met do

Copy tree and attributes to GPU device memory
Launch B parallel thread blocks

Copy tree and attributes to shared memory
Select and perform move
Modify tree /*local copy in shared memory*/
Evaluate objective
Write objective in GPU device memory

11. CopyB objectives from GPU device memory
to host memory

12. Pick best move

13. Modify tree with best move

14. end /*end while loop*/

End

©CeNoGO WD

=
©

step 3, di erent moves are explored in di erent thread blocks, and the objective function
is evaluated and stored in the device memory (step 4). Finall, the objective results are

copied back to the host memory (step 5).

4.3 Preliminary Results
This section describes the methodology and initial resultsobtained through the pro-

posed algorithm.

4.3.1 Methodology

The hardware platforms that are used to evaluate the algorihm are listed in Table 4.2.
There are two systems: (1) a 2.40GHz Intel Core 2 Quad Q6600 Kes eld processor with
a NVIDIA GeForce GTS 250 G92 GPU; and (2) a 2.27GHz Intel Xeon B5520 Nehalem-EP
processor with four NVIDIA Tesla C1060 GPUs. CUDA 2.3 SDK is used for the GPU

31

I
Host memory | Device memory GPU
: Multiprocessor
. ; . Shared
B*-Tree data i B*-Tree data 73 memory
structure 7 structure = I@
M
Constants ; Constants . |
: SP || sP||sP
Results >~
L] Results . Thread Block

e C)

CPU GPU

Fig. 4.3: Data ow between CPU and GPU. Active thread is shown with a darker shading
within a thread block.

implementations. The NVIDIA GPU driver version is 190.18 beta.

The Parquet Floorplanner from the UMpack suite of VLSI-CAD t ools is used as the
sequential version of oorplanning [18]. The GPU version isimplemented by suitably mod-
ifying this code to incorporate both algorithmic transformations as well as GPU specic
CUDA code. The run time of the oorplanning program is used asa benchmark to evalu-
ate the e ciency of the algorithm. A CPU timer is used to measure the distribution of the
total time spent in the CPU and the GPU. Within the GPU, the GPU timers are used to

measure time spent in di erent execution stages (describedalter).

Table 4.2: CPU and GPU specs.

NVIDIA NVIDIA Intel Core 2 | Intel Xeon
Geforce GTS| Tesla C1060 | Q6600 E5520
250 G92 Nehalem-
EP

No. of multipro- | 16 30 1 2

cessors

No. of cores 128 240 4 8

Max. bandwidth 58 GB/s 73 GB/s

32

4.3.2 Results

Table 4.3 presents the preliminary results on MCNC benchmak circuits. Each bench-
mark is run several times, and the best run for both the algorihms is reported in the table.
The number of blocks in each oorplan, shown in parenthesesjndicates the size of the
oorplan. For each benchmark, the execution time of the seqential CPU version is pre-
sented, as well as the speedup achieved using parallel GPU ptementation on two di erent
machines. Additionally, the results also show the relativequality of the solution achieved in
the GPU, compared to the CPU. Without loss of generality, for the purpose of this paper,
only the area of the oorplan is considered as the objective inction. The algorithm can
be trivially modi ed to account for other objectives such as wire length and temperature.
Thus, the results measure the quality by comparing the area bthe oorplan resulting from
the two algorithm versions.

Across all benchmarks exceptami49, the parallel GPU oorplanner shows promising
speedup compared to the sequential version. For exampleip and apte show 31% and
27% speedups, respectively. However, fami49, the parallel algorithm takes nearly double
the time it takes to run in the sequential mode. Interestingly, ami49 is also the largest
benchmark among the set of circuits that are considered here

It is noticeable that the solution quality varies signi can tly depending on the bench-
mark. While smaller benchmarks show comparable solution gality in the parallel version,
larger benchmarks tend to su er a modest loss of solution qudty. For example, the solution
achieved inami33 is about 7% worse. To understand these results better, it ismportant

Table 4.3: Preliminary results. Number of modules in a bencmark is indicated in paren-
theses.

Benchmark CPU run | Geforce GTS| Tesla C1060| Quality
time 250 Speedup | Speedup

xerox(10) 0.388s 1.29X 1.56X 1:2%

ami49(49) 8.186s 0.53X 0.54X 5:37%

ami33(33) 3.770s 1.02X 1.02X 7:26%

apte(9) 0.322s 1.27X 1.53X 1:28%

hp(11) 0.464s 1.31X 1.61X 2:1%

33

to inspect the execution time in the parallel GPU oorplanner in more details and show

where most of the run time is spent.

4.3.3 Where Does Time Go in a GPU?

Figure 4.4 shows the breakdown of the total execution time ofthe GPU oorplan
implementation for ami49 on G92. Results for other benchmarks, as well as those on Tesl
C1060, are similar to this breakdown. First, it is clear that most of the computation is able
to be o oaded to the GPU, as only 1.5% of the total time is spent in the CPU. Second,
the bulk of the total time is spent in executing the kernel function in the GPU (98%),
with negligible time spent in data communication between the CPU (host) and the GPU
(device).

To take a closer look at di erent execution components within the GPU, we divide the

kernel execution run time into another four parts:

Device to shared memory copy,
B* tree move,
Objective evaluation,

Write to device memory.

1.53%

= 0.33% W Byt

B Host2Dev Mem : 0.0147s

Kernel Exec : 14.969s

W Dev2Host Mem : 0.0511s

CPU:0.233s

Fig. 4.4: Execution time breakdown for ami49.

34

Figure 4.5 shows the run time breakdown of the kernel executin. Interestingly, most
of the time in the GPU kernel is spent in copying data from the device memory to the
shared memory (97%). Time spent to perform the computation b evaluate the objective
function for the newly generated oorplan constitute 3% of the total run time.

Together, Figures 4.4 and 4.5 indicate that optimizing datacopy from the GPU device
memory to the shared memory is likely to give substantial bem ts. The next section

describes the e orts in optimizing the GPU oorplan implemen tation.

4.4 Performance Optimization
This section describes several techniques that have been m@grred for optimizing the
GPU oorplanning algorithm, all of them targeting the time t o copy data from the device

memory to the shared memory (step 2 in Figure 4.3).

4.4.1 Limiting Data Copy to Shared Memory (OPT1)

Shared memory allows very fast operations, and it is generbl bene cial to copy all the
accessory data structures that remain unchanged, to the slrad memory. However, many
of these data structures (e.g. block width and height) are acessed infrequently during

evaluating a candidate move. In the context of oorplanning, the additional latency of

3.00%

W 0.09%_ | ®0.03%
Dev2Shared Mem
W B* Tree Move
Objective evaluation
96.88% W Results2Dev Mem

Fig. 4.5: GPU execution time breakdown forami49.

35

infrequent access to the device memory for these data itemss isubstantially lower than
the cost incurred to copy them to the shared memory. Therefoe, in the rst optimization

(OPT1), copying of these constants to the shared memory is avoided

4.4.2 Parallelize Device to Shared Memory Copy (OPT2)

When applying a move on a oorplan, the B* tree representation of the oorplan is
modi ed in the shared memory. As a result, only use one threadper block is utilized
to perform the move and subsequent objective evaluation (Sion 4.2.1). However, when
copying data from the device memory to the shared memory, muiple threads can be
employed in a block to concurrently copy data items. Although device memory access is
slow, its bandwidth is very high in a GPU, thereby easily accanmodating concurrent thread
accesses.

Figure 4.6 illustrates this technique, where we concurrerly copy data from the device
memory to the shared memory. During the copy phase, each thigd block employs several
concurrent threads to copy the data. After the copy phase, oty one thread performs the
necessary computation for evaluating a move on the oorplan Interestingly, the number of
threads utilized to perform this copy has an impact on the spedup achieved through this
technique.

Figure 4.7 shows this tradeo between number of threads and geedup achieved in
ami49. The data is normalized to the execution time where a singlehread is used for copy-
ing. As the number of threads is increased, concurrent devee memory access is increased,
leading to a speedup. However, after a certain point, the dece memory bandwidth is
saturated, and adding more threads does not lead to additioal speedup. G92 machine
shows maximum relative speedup with 32 threads, while the Tgla C1060 shows maximum
speedup with 256 threads. The latter supports higher memonbandwidth, thereby showing

better speedup with higher threads than G92.

4.4.3 Memory Access Coalescing (OPT3)

One way to exploit the high bandwidth from the device memory is to coalesce memory

36

B*.Tree Data | Device Memory
Structure
I Time

Memorycory | I | ||
L Multiple

seanng | [[|| N | |
Processors are

oot | [|| HE || B

data in parallel 0 1 2

Shared Shared

Memory Memory

Computation i i i ;
In each block,
one Streaming TTI

Processor is

evaluating the
0 1 2

move

= = |

Device Memory

Fig. 4.6: Parallelizing data movement between shared memgrand device. Active threads
on streaming processors (SP) are shown with darker shadingithin a thread block.

=8 G924 4 Tesla C1060

= = N
o ol o

Relative Speedup

(&)

1 2 4 8 16 32 64 128 256
Number of Threads

Fig. 4.7: Speedup comparison with concurrent threads to copdata.

accesses, i.e. let a half warp (16 threads) access a contigisoregion of the device memory,

in which case 16 data elements can be loaded in one transaatio Data structure like the B*

37

tree representation is frequently copied between the devie and the shared memory. Hence,
coalescing device memory access is essential to the ovena#irformance.

Irrespective of how the B* tree oorplan representation is gructured and interpreted,
its data can be contained within a at and dense memory space.Consequently, it is possible
to copy the entire data as a memory chunk. This technique proides ample exibility to
handle other oorplan representations as well.

In the third optimization, the access to the oorplan representation is coalesced by
treating it as a at chunk of data. For example, copying sparse data elements from arrays
of structures is avoided, which causes non-coalesced dezimemory access patterns as shown
in Figure 4.8(A). The data copying scheme is con gured such hat a half warp can fetch a
segment of the data chunk within one transaction. As shown inFigure 4.8(B), the segment
contains 16 contiguous data elements, which are fetched sutaneously by 16 threads.
Hence, the access to device memory bene ts from a much highéandwidth. Moreover, the
size of each data element is required to be 4, 8, or 16 bytes tmalesce device memory access.
The 4-byte con guration is chosen to ensure correct alignmat for the B* tree representation

of the oorplan.

.
&9 NSl NN EuN EEE
)

Shared

momoy LL L T T TTTTTTTITTTT
Device A

Shared

momey L L L LT TTTTTTTTTTT

Fig. 4.8: (A) Non-coalesced device memory access. Only fodhreads are active in the
transaction. (B) Coalesced device memory access. Sixteerath elements are copied in one
transaction.

38

4.4.4 Results

Figure 4.9 shows the GPU execution time breakdown after appling all the optimiza-
tions. Comparing to Figure 4.5, which shows the GPU executia time before optimization,
a dramatic reduction can be noticed in the time spent in data @mmunication between the
shared memory and the device memory. Only 22.3% of the ovedalime is spent in copying
data into the shared memory. Once the major performance boteneck is reduced, there is
a relative increase in other computation components such akvaluate, as expected.

Figures 4.10 and 4.11 show the speedup achieved after apphg the performance opti-
mization techniques on G92 and Tesla C1060, respectively. IAthe speedups are relative to
the sequential version in the CPU. For each benchmark, four brs are presented. From left
these represent results for the preliminary version, onlyOPT1, applying both OPT1 and
OPT2, combining all three optimizations (OPT1, OPT2, OPT3), respectively.

Each optimization gives signi cant speedup, but combining them together gives us
dramatic speedup. For example,ami49 achieves an overall speedup of nearly 17X on the
Tesla machine, compared to the sequential version. Largerircuits yield greater speedup, as
the data copy cost is better amortized by concurrently compuing costlier move operations.
Across the range of circuits, the GPU oorplan implementation achieves9.4{14.6X and
10{17X speedups on G92 and Tesla C1060 machines, respectively. @ivthe long depen-

dency chains and iterative nature of the original sequentiaalgorithm, these improvements

B 4.05%

22.28% Dev2Shared Mem

H B* Tree Move
® 0.36% 73.31% Obijective evaluation

W Results2DevMem

Fig. 4.9: GPU execution time breakdown forami49 after optimization.

39

are signi cant.

4.45 Quality vs. Speedup

The GPU oorplanning algorithm achieves dramatic performance improvement, while
delivering solution quality comparable to the sequential \ersion. However, it is interesting
to explore techniques that can improve the solution quality even further, and investigate
their impact on runtime performance.

So far, the GPU oorplanner evaluates about the same number bmoves as its CPU
counterpart. However, the inherent nature of exploring the solution space is di erent in the
GPU oorplanner. In a GPU, the algorithm attempts to cover mo re breadth by applying
many concurrent moves on a given intermediate oorplan. Thesequential version, however,
attempts to cover more depth by performing several succesa moves. The slight loss in
solution quality, especially for large circuits, in the GPU version stems from this fundamental
di erence in solution space exploration.

One way to mitigate this problem in the GPU oorplanner is to simply explore more
moves than the sequential version to increase the number ohiermediate oorplans on
which concurrent moves are applied. However, evaluating nte@ moves can increase the run
time, and it is important to inspect the improvement in solut ion quality achieved through
this technique. Figure 4.12 shows this tradeo by plotting the speedup against the solution

16, M Preliminary [JOPT1 M OPT1+OPT2 [JOPT1+OPT2+OPT3

144
124

Speedup

oON MO

Xerox ami49 ami33 apte hp

Fig. 4.10: Speedup achieved using G92.

40

18, M Preliminary [JOPT1 M OPT1+OPT2 [JOPT1+OPT2+OPT3

16
144
12+

Speedup
=
o

ON B~ O

Xerox ami49 ami33 apte hp

Fig. 4.11: Speedup achieved using Tesla C1060.

quality relative to the sequential version. Indeed, it is clear that sacri cing speed can yield
better quality. For example, ami33 can reach within 2% of the quality achieved in the
sequential version, if less than 2X speedup is accepted.

As evident from Figure 4.12, improvement in solution quality comes at a signi cant
run time cost. A key question then is how to restructure the GPU oorplanning algorithm

that would allow us to improve the solution quality without s acri cing the speedups that

have achieved.

4.5 Algorithm Restructuring to Improve Solution Quality

The slight loss in solution quality stems from exploring more breadth in the GPU

Fig. 4.12: Solution quality vs. speedup tradeo .

41

algorithm. Therefore, it is instructive to investigate if it is possible to restructure the
algorithm to strike a balance between exploring depth (seqgential version) and breadth
(GPU version). In the current version, as explained in Figure 4.2, each GPU thread applies
a single move on the oorplan during every GPU function call from the CPU. Instead of
applying a single move, each GPU thread is allowed to apply mitiple successive moves. In

this fashion, each GPU thread will be able to explore a largempart of the solution space.

4.5.1 Algorithm Overview

Figure 4.13 shows this new restructured algorithm. The algathm is designed in a
generic way such that the user can alter the depth D) and breadth (B) of the algorithm
in runtime. While applying D successive moves, each GPU thread can choose to either
accept or reject a given move, similar to the sequential CPU korithm. The acceptance
of a move depends on whether the move was successful in achmay a better objective. In
addition, a sub-optimal move (uphill) is accepted with a random probability that decreases
as the algorithm progresses, modeling the simulated annaaly behavior. Hence, there areD
successive moves in each thread, anB such threads in parallel in the GPU. The solution
quality of the resulting oorplan will depend on the choice of the variables B and D,

respectively.

4.5.2 Implementation

The implementation of the new algorithm di ers considerably from the implementation
that was discussed so far. The entire oorplan data structure (B* tree) is now completely
resident in the GPU, thereby considerably reducing the GPUCPU data communication.
The CPU guides successive GPU iterations by selecting the Is¢ candidate oorplan.

However, this implementation also results in an increase imata copy operation between
the shared memory of a thread block to the device memory. In stcessive GPU iterations, a
GPU thread may start from the intermediate oorplan compute d in another GPU thread.
Thus, to accomplish this data communication between multide GPU threads (belonging to

di erent thread blocks), each thread block now copies the inermediate oorplan represen-

42

Fig. 4.13: New CPU-GPU oorplanning algorithm.

tation from its shared memory to the device memory. In summay, the modi ed algorithm
implementation largely eliminates the tra ¢ between CPU an d GPU, but increases the data

communication between the GPU device memory and shared mennga

45.3 Results

The results from the implementation of the modi ed algorith m is presented in the
section. Since the algorithm can now tune both the breadth (mmber of concurrent threads)
and the depth of exploring the solution space, the results a& shown in 3D contour plots.
Figure 4.14 shows the solution quality and speedup for thredoenchmarks: hp, ami33, and
ami49, respectively. Figure 4.14 shows the results achieved in th G92 machine, and the
Tesla C1060 follows the same pattern seen in this gure.

It is observable that the algorithmic modi cation is partic ularly e ective in improving
the solution quality across all benchmarks. Inhp, there is an improvement in solution
guality over the CPU version Exploring successive moves can better exploit the aggretm

computation bandwidth for the smaller overall solution space (due to the smaller number

43

(A) Solution quality for ami49 (B) Speedup forami49
(C) Solution quality for ami33 (D) Speedup forami33
(E) Solution quality for hp (F) Speedup for hp

Fig. 4.14: Depth vs. breadth: Solution quality and speedup ér di erent benchmarks.

44

of blocks), resulting in better quality. The modi cation ac hieves up to 2.5% better solution
quality, especially for smaller depth. The speedup achiewitin hp is also signi cant: nearly

5.6X for a depth of 1 and breadth of 64. Notice that this speedp is lower than that achieved

previously (Figure 4.10). This result is due to increased sared memory to device memory
copy where the B* tree representing the oorplan is copied fom the shared memory of
each thread block to the device memory. Unlikehp, both ami33 and ami49 show a distinct

pattern in solution quality and speedup based on the breadthand the depth. There is a
substantially better solution quality when increasing the depth. However, better speedups
are observed with smaller depth and larger breadth. Unlikehp, there is an increase in
maximum speedup achieved inami49. Sinceami49 is the largest benchmark, elimination

of oorplan data communication between GPU and CPU outweighs the increase in shared
memory to device memory communication, resulting in an oveall speedup.

There is a tradeo involved in achieving speedup and solution quality. A high speedup
usually degrades the quality of the solution and vice versaThe speedup and solution quality
of the algorithm are two very di erent attributes, and hence it is necessary to normalize
them to develop a combined metric. For this purpose, a metricSQ is de ned to obtain
a tradeo between the speedup (SP) and the solution quality @), and is used to select
the desirable depth and breadth of the proposed algorithm. SQ is obtained by adding
the speedup and solution quality normalized with their corresponding maximum values as

shown in Equation (4.1).

sQ= Speedup N Quality
~ jMax Speeduf Max jQuality j

(4.1)

Tables 4.4 and 4.5 present depth and breadth combinations tht achieve best speedup,
best quality and best combined metric SQ), respectively. Across all benchmarks, there is a
4{23X speedup in G92, and4{30X speedup in Tesla C1060 machine. Using the combined
metric, It has resulted in excellent solution quality while maintaining remarkable speedup.

For example, ami49 achieves23X and 30X speedup, while delivering marginally worse

45

(-3.6%) and (-2.06%) solution qualities in G92 and Tesla C160, respectively.

4.6 Adapting Annealing in GPU

This section discusses the adaptation of the conventional rmnealing technique in the
GPU. Typically, simulated annealing algorithms employ a number of sequential moves for
every temperature state. The number of moves employed is ppmortional to the oorplan
size. The number of moves in each temperature state is boundeby integer Z. In the
Parquet annealer, for example,Z is dened as Z = 4 sizeof (floorplan). Once the
number of sequential moves exceedsd, the algorithm moves to the next temperature state.

In the GPU annealing algorithm, the number of moves applied & a given temperature
state is determined by the depth and breadth used during exadation. The GPU annealer
completesM = Depth Breadth number of moves for every kernel launch. Therefore,
each temperature state drivesn M moves, wheren is the number of kernel launches in
this state. Since,n M Z is satis ed, the GPU typically performs more moves than the
CPU. Moreover, the number of total moves can vary with the chesen breadth and depth,
resulting in a somewhat unfair comparison.

Table 4.4: Tradeo in solution quality and speedup (G92). D and B represent the depth
and breadth, respectively.

Best speedup Best quality Best SQ
Benchmark |~ —gp 0 fDBg | SP O [TDBg | SP 0
Xerox f1,64g 4.79 0.42 2,329 3.4 1.38 | £8,64g 3.59 1.37
apte f1,64g | 4.08 | -0.83 £4,969 | 3.42 0| fa96g | 3.42 0
hp f1,64g | 552 | 2.46 f1,64g | 552 | 246 | f1,64g | 552 | 2.46
ami33 f2,32g | 1445 | -8.01 | f128,128y | 2.32 | -1.86 | f4,969 | 13.47 | -4.09
ami49 f1,96g | 22.94 -3.6 64,1289 | 5.35 | -1.08 | f1,96g | 22.94 -3.6

Table 4.5: Tradeo in solution quality and speedup (Tesla C1060). D and B represent the
depth and breadth, respectively.

Best speedup Best quality Best SQ
Benchmark —5 50T op 0 fDBg | SP o fDBg | SP o)
Xerox 2,649 499 | 045 f4,169 | 2.77 1.37 8,649 333 | 137
apte f1,64g | 4.19 | -1.23 £8,16g | 2.19 0| f1,9g | 3.33 0
hp f1,64g 6.04 | 0.65 1,329 31| 246 1,969 5.96 | 2.46
ami33 f1,64g | 17.22 | -6.31 96,969 | 2.66 | -2.47 f1,64g | 17.22 | -6.31
ami49 f2,128g | 30.68 | -3.67 | 128,128y 6.4 | 0.05 | f1,128g | 29.97 | -2.06

46

To address this problem, a new temperature scheme is implemed for the GPU
annealing algorithm. The objective is to maintain identical temperature spectrum in the
GPU implementation. This goal is achieved by making sure tha the temperature drop in
successive kernel launches are based on number of moves madeach kernel launch. First,
the function used by the CPU annealing algorithm to calculate the decreasing temperature
is shown in Equation (4.2):

%=t f(); (4.2)

where f (t) is a function of the current temperature t, f (t) has a range of [01], and t%is
the new temperature. Second, the GPU annealing temperaturescheme is modi ed, and

calculate t° using Equation (4.3):

nMm 1
z ;

%=t f(t) 4.3)

where is a user parameter that tunes the total number of moves by the GPU annealing
algorithm, in terms of the ratio of the number of total GPU and total CPU moves Param-
eter provides an additional degree of freedom in tuning the GPU annealing algorithm.
Thus, the total number of moves employed remains xed acrossall depth and breadth

combinations.

4.7 Design Space Exploration
This section presents a design space exploration in multigl degrees of freedom a orded

by the GPU oorplanning algorithm.

4.7.1 Solution Selection Through Binary Tree Reduction (BTR)

The breadth of the GPU oorplanning algorithm allows explor ing multiple oorplans
at the same time, or searching for better quality by applying di erent moves in di erent
threads on a single oorplan. The former method horizontally expands the solution space,
hence avoiding the algorithm being trapped at a local minima The later method makes

the algorithm more greedy, allowing it to rapidly approach a minimum solution. Under

47

di erent contexts and stages of annealing, either methods ca increase the e ciency of the
GPU oorplanning algorithm.

A binary tree reduction algorithm is implemented to combine both these techniques.
Figure 4.15 illustrates the process of selecting solutionthrough binary tree reduction. The
algorithm starts with 16 solutions. Given a reduction width of 2, the rst row solutions are
divided into eight groups, which are circled within colored background. The best solution
in each group, illustrated as a white block, is selected and wplicated within the group.
Hence, the solutions in the second row are generated using ahbest solutions from the rst
row (the process is shown as an arrow). The selection and duphtion processes are then
repeated for successive iterations with new values of redtion width.

The reduction width grows with power of 2 along with decreashg temperature. A
smaller reduction width leads to a larger solution space exjpration. As shown in Fig-
ure 4.15, the reduction width starts with 2, allowing eight solutions to be explored simulta-
neously. On the other hand, larger reduction width renders nore concentrated exploration.
With a reduction width of 16, only one solution is preserved,and explored subsequently.
The reduction width is reset once it grows beyond the breadthof the GPU annealing. There-
fore, the greediness of the GPU annealing is repeatedly alted by recursively applying the

binary tree reduction along the direction of decreasing terperature.

4.7.2 Annealing Diversity in GPU Threads (ADT)

This technique introduces diversity to di erent GPU anneali ng threads by applying
divergent temperatures in parallel threads. Variation in temperature causes each annealing
thread to di er in the degree of greediness. The threads with saled-up temperature bear
more acceptance to uphill moves, while the scaled-down thees are predominantly downbhill.
The temperature of each thread is scaled based on the initidlemperature t of the iteration,

using the following Equation (4.4):

t°%=t C; (Cp sin(—)+1); 4.4)

48

Fig. 4.15: One iteration of binary tree reduction.

where blkpin, is the dimension of the CUDA blocks, which is the number of anealing
threads of this case. blkg4x is the index of the annealing thread, andblk,4x 2 [1; blkpim].
t is the initial temperature of the iteration. t°is the temperature of the annealing thread

with block index of blk,gx . C1 and C, are constants, and given asC; = 0:1 and C, = 20.

4.7.3 Dynamic Depth (DD)

One of the major issues with the GPU annealing algorithm is the insu cient amount
of moves during the uphill stage of the annealing. The GPU algrithm employs the same
amount of moves as the sequential CPU implementation, but tkey are spread out into
multiple threads. Therefore, the number of moves in each GPUthread is signi cantly
lower. The brief uphill stage may cause later annealing to berapped in a local minima,
degrading the nal solution quality, especially for large benchmarks.

To address the problem of insu cient uphill moves, the dynamic depth is implemented
in the early uphill stage of annealing. Typically, before the temperature drops below half
of the initial temperature, the GPU annealing algorithm for ces 8X depth in each iteration.
Interestingly, the uphill stage is very short in the whole annealing process. For GPU anneal-
ing, it typically takes between 1% to 2% of all iterations. Therefore, the additional moves
at this stage only increase the overall number of moves by a satl fraction. On the other
hand, to avoid performance penalty, this technique aggresgely avoids objective evaluation

after each move (evaluate move in Figure 4.13) to allow 100%caeptance rate.

49

4.7.4 Results

This section presents results from the design space expldian. The impact of the
design space exploration is shown in Table 4.6. Across all lsemes, breadth and depth are
set to 16 and 96, respectively, and is set to 2 (2X as many movs as the CPU). Results
using the earlier implementation (Section 4.5) are presergd in the column namedOriginal .
In all cases, the speedup and solution quality are normalizk to the CPU. In addition to
the MCNC benchmarks, the results for three GSRC hard-block lenchmarks are also listed.
Their CPU run time using the Parquet oorplanner is listed in Table 4.7.

BTR technique is able to improve the solution quality, with negligible performance
loss. This improvement is especially marked in larger oorganning benchmarks. However,
when combining the annealing diversity (ADT), the solution quality is degraded (column
marked BTR+ADT). Thus, subsequent results do not employ ADT .

Maximum bene t is seen when combining BTR with DD (column mar ked BTR+DD).
Adding more exibility to perform uphill moves through DD su bstantially improves the
solution quality. In fact, optimistically avoiding costly objective evaluation also further im-
proves the speedup seen under the DD. For examplemi49 is able to maintain the solution
quality within 1% of the CPU, while also achieving nearly 20X performance improvement.

Table 4.6: Comparison of using BTR, BTR+ADT, and BTR+DD. All results are in G92
machine with B=16, D=96, and = 2.

Original BTR BTR+ADT BTR+DD
Speedup | Quality Speedup | Quality Speedup | Quality Speedup | Quality
Xerox 14.19X 0.96% 13.18X 0% 14.19X -0.99% 18.45X 1.37%
apte 12.88X -0.83% 12.39X -0.83% 11.93X 0% 17.89X 0%
hp 14.97X 1.54% 14.97X 2.16% 17.7X 1.54% 24.42X 1.54%
ami33 18.22X -4.01% 17.54X -4.54% 17.7X -7.56% 20.72X -3.68%

ami49 16.81X -1.39% 17.16X -1.07% 17.46X -3.72% 20.02X -0.62%
n100 18.58X -2.41% 18.17X -1.07% 18.92X -8.55% 21.14X -0.32%
n200 18.91X -3.95% 18.92X -3.38% 18.65X -11.37% 20.46X -2.3%
n300 18.44X -12.84 18.44X -9.17 18.63X -11.81 20.3X -8.91%

Table 4.7: CPU run time of GSRC hard-block benchmarks.

Benchmark | n100| n200 | n300
Blocks 100 | 200 300
Run time (s) | 34.6 | 136.6 | 305.6

50

In the light of this impact of various design space exploratons, the comprehensive
results are presented for combining BTR and DD in Table 4.8 axl Table 4.9. By varying
breadth, depth as well as , the results present the best obtaned ones (similar in spirit to
results shown in Table 4.4).

Clearly, the GPU oorplanner has improved signi cantly in b oth speedup and solution
quality. The algorithm renders exceedingly high speedup whn the breadth and depth are
both high. As expected, the solution quality degrades dramécally when encountering such
high speedup. Onlyapte benchmark obtains a reasonable 0.83% worse solution qualitdue
to its small size.

When optimizing solely for solution quality, it is observable that the GPU algorithm
can generate equal or better solution quality in most benchrarks, while still maintaining
signi cant speedups. One can observe that two groups of bemenarks show distinct pattern
in solution quality and speedup based on the breadth and the dpth. The best solutions
in the group of ami33, n100, n200, and n300 are obtained with =2, and B = 8. These
two parameters results in the maximum amount of moves per GPUthread, allowing more
deeper explorations of the solution spaceami33, n100, and n200 can generate marginally

Table 4.8: Tradeo in solution quality and speedup. B and D represent the breadth and
depth, represents the time of CPU moves. Results are from G2 GPU.

Name Best Speedup Best Quality Best SQ
fBD, g SP(X) Q(%) fBD, g SP(X) Q(%) fBD, g SP(X) Q(%)
ami33 f96,128,1 g 471.36 -65.22 8,64,2¢9 9.98 -0.24 f96,64,1 g 157.13 -5.65
ami49 f128,128,1 g 292.39 -20.62 32,3229 36.88 0.35 f96,64,1 g 163.74 -3.48
Xerox f128,32,1 g 123.02 -13.69 f32,64,2 g 36.90 1.54 f32,96,1 g 73.80 0.72
apte f96,32,1 g 160.98 -0.83 f96,64,1 g 160.98 0.00 f64,96,1 g 160.98 0.00
hp f96,64,1 g 232.08 -23.46 f128,16,1 g 116.01 2.46 f32,64,1g 116.01 2.46
n100 f128,64,1 g 88.70 -7.65 £8,96,2 g 10.46 0.34 128,321 g 82.17 -5.48
n200 f128,128,1 g 47.66 -20.69 8129 6.64 -0.87 f96,16,1 g 40.66 -5.77
n300 £128,128,1 g 43.90 -25.33 8,642 ¢ 10.07 -4.47 32,321 g 40.71 -11.38

Table 4.9: Tradeo in solution quality and speedup. B and D represent the breadth and
depth, represents the time of CPU moves. Results are from Tesla C1060 GPU.

Name Best Speedup Best Quality Best SQ
fBD, ¢ SP(X) Q(%) fBD, ¢ SP(X) Q(%) fBD, ¢ SP(X) Q%)
ami33 96,1281 g 498.40 -30.75 83229 10.39 -0.24 f96,64,1 g 161.13 -5.81
ami49 f128,128,1 g 298.58 -19.92 £32,16,2 g 37.49 0.97 f64,64,1 g 169.87 -2.75
XEerox 128,321 g 135.47 -13.17 32,642 g 41.03 1.37 £32,96,1 g 80.06 0.86
apte f96,32,1 g 193.51 -2.73 f64,96,1 g 188.75 0.00 f96,64,1 g 188.75 0.00
hp f96,64,1 g 309.50 -24.54 96,819 155.87 2.46 96,819 155.87 2.46
n100 f128,64,1 g 126.30 -10.53 18,6429 14.89 0.61 f96,64,1 g 116.97 -4.98
n200 f128,128,1 g 67.93 -20.69 88.2¢g 9.95 -0.24 f96,16,1 g 58.89 -5.82
n300 f128,128,1 g 62.95 -24.63 f8,642¢g 14.50 -3.65 f32,64,1g 60.23 -10.49

51

equal quality solutions. Testcasen300, which includes 300 blocks, can achieve only within
4% of the best quality seen in the CPU (on Tesla). The other grop gets benet from a
broader solution space exploration, allowing them to obtan both better quality and greater
speedup by employing more threads (higher breadth).

Interestingly, the results cannot discern any direct relationship between the depth pa-
rameter and the solution quality. Typically, the depth is in versely proportional to the
number of kernel launches. Hence, large depth can reduce tHernel launch overhead, but
also lead to the steeper temperature gradient. In the best gality and best SQ results, it

is shown that the value of the depth is most commonly distribued near 64.

4.8 Conclusion

This work proposes a novel GPU oorplanning algorithm. The algorithm evaluates
multiple concurrent moves, thereby breaking the long depedency chains of data and con-
trol in the sequential algorithm. Several optimization techniques have been demonstrated
in the context of implementing this parallel oorplanning a Igorithm on a modern GPU. To
improve the solution quality, this work presents a comprehasive exploration of the design
space, including various techniques to adapt the annealin@pproach in a GPU. Speedups
ranging 6{188X are observed across all benchmarks. These speedups are agbd while
also improving solution quality in several benchmarks, andmaintaining nearly similar qual-

ity in the rest.

52

Chapter 5
GPU-Based Global Routing

5.1 Global Routing

VLSI physical design is a multi-phase process, typically fling into three categories:
partitioning, placement, and routing. The partitioning ph ase splits the entire chip into
smaller and more manageable pieces, such that each one canibéependently designed. The
placement phase xes the locations of each pieces while mimizing an estimated wire length
with which the blocks are connected. The routing phase nds arealization of the connections
among the blocks, while avoiding possible physical constiats, such as congestion and
crosstalk e ect.

Typically, the routing phase is divided into global routing and detail routing processes.
In global routing, the interconnects are approximately laid out on a grid map. Pins that fall
into the same tile location are mapped to the center of the tie. The goal of global routing
is to connect the tiles that are marked with common pins with rectilinear Steiner Trees on
the grid map. In detailed routing, the pin connectivity with in each tile is solved to produce
the exact geometric layout of the interconnect. This work wil focus on the global routing
problem.

Global routing problem (GRP) is one of the most computationally intensive processes
in VLSI design. Since the solution of the GRP is used to guide Urther optimizations
before tape-out, it also becomes a critical step in the desigcycle. Consequently, both the
execution time and the solution quality of the GRP substantially a ect the chip timing,
power, manufacturability as well as the time-to-market.

Aggressive technology scaling introduces several additial constraints in the GRP, sig-

ni cantly increasing the complexity of this important VLS| design problem [56,57]. Alpert

53

et al. predicts that at 32nm there will be 4-6 metal widths and 20 thicknesses across 12
metal layers [58]. Furthermore, IBM envisions an explosionin design rules beyond 22nm
that will make GRP a multi-objective problem [59]. Unfortun ately, current CPU-based
routers will prove to be ine cient for the increasingly comp lex GRP as these routers only
solve simple optimization problems [60, 61].

Tackling this huge computationally complex problem would require a platform that
o ers high-throughput computing such as a graphics processor unit (GPU). Traditionally,

a GPU's computing bandwidth is used to solve massively pardél problems. GPUs excel
in applications that repeatedly apply a set of operations ona big data set, involving single
instruction multiple data (SIMD) style parallel code. Several existing VLS| CAD problems
have seen successful incarnation in GPUs, delivering morehan 100 speedup [62{64].
However, the canonical GRP does not t well into such an exection paradigm because
routing algorithms repeatedly manipulate shared data structures such as routing resources.
This sharing of resources disrupts the data-independencesquirement of traditional GPU
applications. Hence, existing task-based parallel routig algorithms must be completely
revamped to make use of the GPU bandwidth.

In the light of these technology trends, this work propose a kbrid GPU-CPU routing
platform that enables a collaborative algorithmic framewak to combine data-level paral-
lelism from GPUs with thread-level parallelism from multi- cores. This work speci cally
addresses the scalability challenges posed to current glabrouters. Till date, there has
been very few works that parallelize the GRP by using multi-ore processors [14,65]. How-
ever, none of these are designed to exploit high throughputamputing platforms such as
the GPU.

Exploiting the computation bandwidth of GPUs for the GRP is a non-trivial problem
as the overhead of sharing resources hurts the overall perimance. In this work, a funda-
mentally new mode of parallelism is used to uncover the perfonance potential of the GPU.
This work propose a novelnet level concurrency (NLC) model to e ciently consider the

data dependencies among all simultaneously routed nets. Tk model enables parallelism

54

to scale well with technology and computing complexity.

5.2 Problem De nition

The GRP is de ned as follows. There is a grid graphG that is composed of a set of
vertices V and edgesE. Each vertex v; in V corresponds to a rectangular cell, while each
edgeeg; in E represents a connection between two adjacent verticeisand j (or a boundary
between two cells). There is also a set of netdl, for which every n; in N is made up of a
set of pinsP. Each pin in a net coincides with a vertex inV. The capacity ¢; of an edge
between verticesi and j represents the number of nets that can pass through that edge
The demandd; represents the current number of nets passing through the egk. Over ow
of an edge is then de ned as the dierenced; ¢j. A net n; is routed when a path is
found connecting all the pins of the net utilizing edges of gaph G. The wire length of a net
is determined by the number of edges it crossed to route all oits pins. A solution to the

global routing problem is achieved when all the netsn; in N are routed.

5.3 Related Works on Global Routing

This section presents a comprehensive literature review @r existing academic global
routers. In 2007 and 2008, the International Symposium on Psical Design (ISPD) held
two global router competitions [66,67]. These contests pnmoted the development of many

recent global routers. The following brie y introduce their key features:

DpRouter [68] uses dynamic-programming based routing teamique to perform seg-
ment movement on rectilinear minimum Steiner tree. To route 2-pin nets, they only
use patter routing technique. The run time of their approach is very short, but they

cannot generate competitive routing solutions, especiayl on todays large-scale designs.

Archer [69] is based on an iterative rip-up and re-route (RRR scheme. To explore
the trade-o between run time and solution quality, Archer r outes net outside of

congestion regions with pattern routing, and use maze routig for the rest. It also

55

uses a Lagrangian relaxation based algorithm to dynamicajl modify the Steiner trees

to reduce congestion.

FastRoute [37{40] is very competitive for time-driven routing. It uses Hanan grid
structure to construct the Steiner trees, then the Steiner ree construction is improved
for simultaneous via computation. Their approach mainly uses monotonic routing and
multi-source multi-sink maze routing. However, solution quality was not their strong
suit until their later versions, in which FastRoute is able to route all benchmarks with

competitive solution quality in addition to the fast routin g speed.

BoxRouter [35, 44] integrates IP formulation to a sequentid framework. BoxRouter

uses progressive IP that initially routes a small box, and ieratively expands the size of
the box to include more unrouted nets. Their routing mechansm is mainly based on
L-shaped pattern routing and maze routing. The later versian of BoxRouter includes
a post-routing phase that is based on negotiation-based RRRscheme to improve

solution quality.

NCTUgr [41] is based on iterative RRR scheme. Their key contibutions are adaptive
pseudo-random net-ordering and evolution-based two-stag cost function that is based

on the negotiation-based RRR scheme.

NTUgr [42] is based on an enhanced iterative RRR scheme thatreates forbidden
regions to allow detours away from congestion. The approachelps the global router
to escape from local optima that traps the solution exploraion as number of iterations

increases.

NTHU-Route [33, 34] is based on iterative RRR scheme. It comimes several tech-
nigues such as the negotiation-based RRR scheme, and congen region identi ca-

tion method to specify the net ordering. They use routing tediniques such as the
monotonic routing and an adaptive multi-source multi-sink maze routing method.

NTHU-Route 2.0 won the ISPD 2008 global routing contest.

56

FGR [32] is based on iterative negotiation-based RRR schemelt has the ability to

directly route on 3D layers, or use a fast layer assignment towed by a 3D clean-up
phase to project 2D solution to the multi-layer design. FGR won the 2D category of
the ISPD 2007 global routing contest. It also generated the lest solution among most

benchmarks at that time.

MaizeRouter [70] is primarily based on extreme edge shiftig and edge retraction tech-
niques to restructure the Steiner tree topologies to obtairsolutions that reduce routing
congestion. The method also allows resources sharing amoitige wire segments of a
tree to reduce the wire length. MaizeRouter won the 3D categry of the ISPD 2007

global routing contest.

GRIP [43] uses 0, 1-integer linear programming (ILP) to modé global routing. It
currently holds the best solution quality in open literatur e of all ISPD 2007 and 2008
benchmarks as of today. GRIP has reported an signi cant 11.%6 average improvement
in total wire length and via cost compared to the solutions from sequential approaches.
However, with most benchmarks taking several days to reach &olution, the long run

time renders their approach impractical.

The most recent works on parallelization of global routing famework are listed as

following:

PGRIP [71] is a parallel version of the GRIP router. It divide s the entire routing prob-
lem into sub-problem by partitioning the routing map, and uses IP-based approach to
solve each sub-problem individually. Once done, they use IRo connect partial rout-
ing solutions in a patching phase. Their methodology create a exible and highly
scalable distributed algorithm for global routing. All benchmarks can nish within
a target run time of 75 minutes, while the global router can sale freely on several
hundred CPUs. More importantly, the solution generated by their parallel router has

roughly the same quality as the sequential version.

57

NCTUgr [14] uses traditional RRR based algorithm at its core But it parallelize
the sequential algorithm in a task-based multi-threaded famework on a quad-core
platform. As a result, multiple nets can be ripped-up and retouted simultaneously
by concurrent threads. A collision-aware heuristic is included to address the solution
quality issue when concurrent nets access common routing seurces. As a result, the
run time of their approach is signi cantly improved, and the solution quality is very
competitive among RRR based approaches. However, their skbility on many-core

systems is not as good as the PGRIP.

5.4 Tackling GRP with GPU-CPU Hybrid System
This section introduces the design motivation and spectrumof the GPU-CPU hybrid

system for global routing.

5.4.1 Wire Length Distribution of GRP

Technology scaling continues to pack more transistors in alip and circuits become
increasingly complex. The routing benchmarks provided in 8PD 2007 and ISPD 2008 show
that modern global routing problems typically come in considerably large scales. Each
problem generally packs a number of sub-problems in the magdiude between 1¢ 107,
while the di culty of each sub-problem, de ned as the length of the 2-pin net, varies in a
wide range.

The distribution of sub-problem di culties is illustrated in Figure 5.1. The diagram
represents the histogram of the di culties of all sub-problems from six benchmarks in the
ISPD 2007 suite. The sub-problems are de ned as the 2-pin nstacquired by decomposing
the multi-pin nets. The di culty of each sub-problem is char acterized with the Manhattan
distance between the two pins. The peaks on the left side of # diagram show that sig-
ni cant amounts of the sub-problems are easy to solve. Consierable numbers of di cult
sub-problems still exist, forming a long-tail distributio n on the right side of the diagram.
Given such properties of global routing problem, a router slould be designed to maximize

the computational throughput with the available hardware.

58

x 10
6 T T T L S L
adaptecl
: : - = -adaptec2
5L R L adaptec3
\ : . |'= - adaptec4
| : |- - -adaptec5
44 : : ——newbluel ||
0 \ : :
() 1 [} :
g \ " :
= |} [.
Q 3r I\ i i
9\ \ 1\ :
= \ I \ :
) A :
\ I\ :
2R\ vy !‘\) : T
'y :
10° 10°

2-pin net wirelength

Fig. 5.1: Wire length distribution indicates co-existence of large number of long and short
wires. Wire length is measured in Manhattan distance.

5.4.2 GPU-CPU Hybrid

A conceptual design spectrum is demonstrated in Figure 5.2where the latency and
bandwidth of the existing computing platforms are compared orthogonally. The single-
core system can solve each routing problem with low latencybut falls short when the
problems come in extremely large numbers. In comparison, t multi-core system provides
larger computational bandwidth with similar latency, maki ng it the most common choice in
parallel global routing [14,65]. However, the GPU platformcan easily prevail in a bandwidth
contest by routing a large number of nets simultaneously. Tk latency for a GPU solution
is likely to be longer due to the additional tra c between the GPU and the CPU.

Given the long-tail distribution of the GRP, a GPU-CPU hybri d solution appears to

be attractive. The short nets, which are also the majority of the entire workload, are good

59

Fig. 5.2: Conceptual picture of computational bandwidth and latency of existing computing
platforms.

t for the GPU platform to utilize the broad computational ba ndwidth. The long nets
are simultaneously assigned to the multi-core platform to @ploit parallelism with lower
latency. The goal is to design such heterogeneous paralleladel to approach the GRP with
a wide-bandwidth low-latency computing platform.

This work implements the proposed GPU-CPU hybrid model for parallel global rout-
ing. The experimental results show the heterogeneous paial model can yield signi cant
speedup across di erent benchmarks compared to the singlesce implementation, while

delivering similar routing quality.

5.5 Overview of GPU-CPU Global Routing

This section gives an overview of the GPU-CPU global router.

60

5.5.1 Objective

Like other global routers [14,32,34,35,40{42,65,69, 70lhe GPU-CPU global router has
three major objectives. First, the minimization of the sum of over ows in all edges; second,
the minimization of the total wire length of all routed nets; and third, the minimization of

the total run time needed to obtain a solution.

5.5.2 Design Flow

The ow of the global router is shown in Figure 5.3. The initial global routing solution
is generated as the following: rst the multi-layer design is projected on a 2D plane and use
FLUTE 3.0 [72] to decompose all multi-pin nets into sets of 2pin subnets. Consequently,
edge shifting [37] is applied on all the nets to modify their nitial topologies. Then the
initial routing is performed to create the congestion map.

During the main phase, the negotiation-based scheme is apield to iteratively improve
the routing quality by ripping-up and rerouting the subnets that pass through over owing
edges. Each subnet is routed within abounding box whose size is relaxed if the subnet is
unable to nd a feasible path (Section 5.8.4). The order of the subnets to be ripped-up and
rerouted is determined through congested region identi cation, an algorithm that collects
subnets that are bounded within the congestion region (Sedbn 5.8.5).

The main phase completes when no over ow is detected. Then ler assignment is
applied to project the 2D routing plane back onto the original multi-layer design. The layer

assignment technique is similar to that described by Roy andviarkov [32].

5.5.3 Global Routing Parallelization

The parallel global router strives for high throughput by maximizing the number of
simultaneously routing nets. However, the negotiation-b&ed RRR scheme is strongly de-
pendent on the routing order. Routing nets simultaneously egardless of their order might
cause degradation in solution quality and performance.

This problem can be tackled by examining the dependencies aomg nets, and extracting

concurrent nets from the ordered task queue. These nets caién be routed simultaneously

61

[
J, Cbl*

)
.)

Fig. 5.3: Global router design ow: The top left section is initialization phase while bottom

left is post-routing phase. Steps in these two sections arelso present in other CPU-
based routers. The right section is RRR. This section is enhaced with a scheduler. The
contributions from this work are highlighted in dark shading background.

without jeopardizing the solution quality. The challenges of extracting concurrent nets are

discussed (Section 5.6), and a novebcheduleris demonstrated to tackle them (Section 5.7).

5.6 Enabling Net Level Parallelism in Global Routing
This section explains the requirements of enabling data-leel parallelism in the GRP:

a necessary step for exploiting high throughput platforms sich as GPUs.

5.6.1 Challenge in Parallelization of Global Routing
There are two main approaches in parallelizing the global rating problem. First, the

routing map can be partitioned into smaller regions and soled in a bottom-up approach

62

using parallel threads [65,73,74]. Second, individual nstcan be divided across many threads
and routed simultaneously. It is called net level concurrency (NLC). NLC can substantially
achieve better load-balancing and uncover more parallelis. However, it also comes at the
cost of additional complexity.

Unlike partitioning, NLC allows sharing of routing resources between multiple threads.
Consequently, to e ectively exploit NLC, one must ensure tha threads have current usage
information of the shared resources. Without such informaton, concurrent threads may not
be aware of impending resource collisions, leading to unientional over ow and degradation
in both performance and solution quality [14]. This phenomeon is demonstrated in Figure

5.4, where both the threads consume the lone routing resouecresulting in an over ow.

5.6.2 Achieving NLC

Unfortunately, collision-awareness alone cannot guararge reaping performance bene ts
by employing NLC on high throughput platforms. This is best explained through Figure
5.5. In this example, two assumptions are made: rst there isa task queue and that threads
continually get a net to route from this queue; second the net in the queue are ordered
based on the congestion of their path. Finally, there are twdayers (horizontal and vertical)

available for routing with demands indicated asdemandy and demandy. When multiple

‘o— B —

(A) (B) (®) (D)
|| demand << capacity B demand>>capacity
Il demand \,=capacity [demand | =capacity
Fig. 5.4: Parallel router must have consistent view of resorces. (A) Routings before RRR.

(B) and (C) Viewpoint of each thread, which unknowingly allo cates con icted resources.
(D) An over ow is realized at the end of RRR when both threads track back.

63

threads are processing a congested region, as in Figure 33(concurrent routing will

cramp limited resources to speci ¢ threads, sacri cing peformance and solution quality.
This problem is exacerbated with increasing number of threds and circuit complexity.

However, it implies that the router can recover substantial performance by allowing threads
to concurrently route in di erent congested regions. In other words, a single thread can
process the region shown in Figure 5.5(C).

Therefore, the key to achieving high throughput in NLC is to identify con-
gested regions and co-schedule nets that have minimal resource collisions . The

next Section will further discuss the proposedSchedulerdesign.

5.7 Scheduler
This section describes the Scheduler that dynamically exaines the dependencies among
nets in an ordered task queue, and extracts concurrent netsat be dispatched to the GPU

and CPU routers for parallel routing.

Fig. 5.5: Collision awareness alone can hurt routing solutin: (A) Four-thread router pro-
cessing a particular congested region, one net per thread Bj Routing solution generated via
collision-aware algorithm. Some resources are wasted due bverhead of collision awareness
because threads are discouraged to route on cells (black, &gn, yellow, and blue cells) that
were previously used by another thread. (C) With proper scheéuling, only one thread is
processing this particular region and some of the resourceme recycled. Remaining threads
are routing other congested areas on the chip (not shown).

64

5.7.1 Scheduler Overview

Figure 5.6 shows the preliminary design overview of a globabuter on a hybrid platform
[12]. This design aims to exploit NLC within the traditional RRR global routing algorithms.

The heart of this approach lies in the Schedulerdesign, which identi es the concurrent
nets to be routed in parallel. Since nets can share routing ources (e.g. tiles on the routing
grid), concurrent nets are chosen in a manner that reduces s®urce con icts where multiple
routing threads attempt to use a given routing resource. Coequently, this approach
restricts the level of parallelism that can be exploited duing the global routing.

The Scheduler dynamically populates two task queues with sets of nets thatcan be
routed simultaneously. These task queues separately servePU and GPU threads. The
task queues are decoupled from each other, to ease the loadl&acing and synchronization
between the CPU and the GPU. Nets for GPU threads are chosen im manner so that the
entire routing for those nets can be e ciently done in the available shared memory in the
GPU architecture. On an NVIDIA Fermi architecture, which li mits the shared memory to

48KB, nearly 99% of the nets from the ISPD benchmark suites ca be routed on the GPU.

GPU

GPU Task Pool

Scheduler]-Decoupled Task Pools

CPU Task Pool

CPU1 CPU2 CPU3 CPU4

Fig. 5.6: Overview of GPU-CPU router concurrent subnets (sret) being distributed to GPU
and CPU task pools.

65

As explained in Section 5.8.2, longer nets are assigned to ¢hCPU, as routing these nets

can uncover several other candidate nets for parallel routig.

5.7.2 Nets Data Dependency

This section explains the concept of nets data dependencigand discuss the parallel
model that examines this dependency to exploit parallelism

In each RRR iteration, the router rst create an explicit rou ting order for all the nets
located within the congested regions. This order is derivecby comparing the areas and
aspect ratios of nets. Higher priorities are assigned to netthat cover larger area with
smaller aspect ratios, and routed rst. Because these netsra easier to nd an over ow free
route, reassigning their routing resources before the smiar nets has a clear advantage in
minimizing congestion and the overall wire length.

By enforcing this explicit routing order, the routing process essentially createdata
dependenciesamong the nets. Speci cally, the routing order dictates di erent priorities for
all nets when reassigning their routing resources. For exapie, when two nets both need
the same resources to nd paths, the one routed rst has a higler priority to obtain those
resources. If the order is changed, a degraded solution iskély to occur. Due to this reason,
a conventional RRR process is typically implemented sequdially to ensure the nets data
dependencies.

In this parallel model, it tries to exploit parallelism by ro uting nets that do not have
a dependency violation among each other. Since net data depdencies only con nes nets
that have sharing routing resources, the key that allows us ¢ parallelize the routing process
while maintaining the data dependencies is to examine the sdred routing resources among
the nets. If no shared resource exists, then the router can $aly exploit the parallelism by
routing these independent nets simultaneously.

Honoring the net data dependencies is crucial for this pardél model. The existing
task-based parallel global router does not examine the net épendency when exploiting
concurrency [14]. As a result, more than 41% of the subnets ara ected by collisions

in shared routing resources. This model does not suit well ira GPU-based concurrency

66

framework. Due to the lack of synchronization mechanism forthread blocks in the GPU
hardware, the parallel model needs to avoid resource coli@n on the GPU's device memory.
This work proposes aSchedulerto generate independent routing tasks for the parallel
global routers. The data dependency is iteratively analyzd, thereby limiting its analy-
sis overhead while providing precise dependency informain. First, the data dependency
among nets is constructed in a dependency graph. Then the raear exploits parallelism by
routing the independent nets. The parallelism created by tre model can exploit massively
parallel hardware without causing resource collision or jepardizing the routing order. As

a result, the GPU-CPU parallel global router achievesdeterministic routing solutions.

5.7.3 Net Dependency Construction

This section presents the scheduler algorithm to constructthe net dependencies. As
an example, a selection of 2-pin nets (subnets) are illustigd in Figure 5.7. This example
assumes that each net's bounding region is the same size aseth covering area, and that

the routing order derived is:

D>C>F>B>E>G>A:

The following section explains how to construct the dependecy graph, and exploit the
available concurrency without causing con ict in routing r esource or order. This approach
is mainly divided into the following three steps.

Tile Coloring: In this step, each tile identi es its occupancy by iterating through the
ordered subnets. The rst subnet region that covers the tileis considered as its occupant.
Using the example from Figure 5.7, the results of the colorediles are shown in Figure
5.8(A). One can observe that most of the map is colored by subet D because it has the
highest priority in routing order. Given this colormap, each subnet can visualize the other
subnets that it is overlapping with, hence determining its dominant subnets.

Finding Available Concurrency: With the help of the colormap, the scheduler can

67

Fig. 5.7: Routing problem with nets overlapping each other.

easily nd subnets that can be routed by checking if it occupies all of its routing regions.
If not, then there is a dependency on other subnets and it musivait until the dependency
is resolved. In Figure 5.8(A), subnetsA and D occupy all of their routing regions. Hence,
they can be scheduled together.

Here the concept ofdependency level s introduced. This metric is used to determine
the urgency of routing certain subnets. The dependency levas scored as the number of
routing regions that one subnet invades. For instance, in Fgure 5.8(A) subnetD scores 5
because it invades the area of ve subnetsB, C, E, F, and G.

From Figure 5.8(B) one can make an interesting observation n the dependencies among
all subnets. SubnetsB, C, E, F, and G are dependent on subnetD but the scheduler
cannot identify the dependencies among them. The algorithmintentionally leaves these
detailed dependencies for future computation, so as to redie complexity while extracting
the available concurrency in a timely manner.

Tile Recoloring: In this step, the algorithm uncovers detailed dependenciedy re-
constructing the colormap. After the scheduled subnets arerouted, the colormap must
be reconstructed to resolve previous dependencies. Figue9(A) shows the new colormap
when subnetsA and D are already routed. Recoloring only needs to consider subtethat

were dominated by A and D. In this case, they arefC;F;B;E;Gg for D's region, and;

68

(A) Colored tiles (B) Dependency graph

Fig. 5.8: Results after the 1st iteration: (A) Coloring of tiles: bigger nets dominate own-
ership over smaller ones. OnlyA and D can be routed together because other nets are
dependent onD. (B) Net dependencies are derived from the colormap.

for A.

The dependency graph is updated using the new map. Figure 5B) shows the new
graph that reveals a new dependency between subne®, E, C, and F. Similar to the
previous iteration, the dependency graph indicates subnetB, C, F, and G can be scheduled

once subnetD has nished, while E can only be scheduled afteB, C, and F are completed.

5.7.4 Implementation and Optimization

The above three steps are recursively applied until all depredencies are resolvedThe

(A) Colored tiles (B) Dependency graph

Fig. 5.9: Results after the 2nd iteration: (A) After D and A are routed, netsC, B, F and G
can be routed together because they have no dependencies.)(Bore detailed dependencies
are revealed in the graph.

69

scheduler thread and the global router threads execute in adlel with a producer-consumer

relationship. The scheduler keeps constructing the dependency graph witthe given task

gqueue, and producing concurrent nets to the router threads. The routers consume these
nets simultaneously with di erent priorities indicated by t he dependency levels, and return
the completed nets to release more concurrent nets.

The e ciency of the scheduler algorithm a ects the available computational throughput
for routing. The complexity of this algorithm increases as he region size and net count
increases. In practice, the problem size is reduced using ¢hidenti ed congestion region
(Section 5.8.4). Instead of exploring concurrency on the dire routing map, the search
area is restricted to only the congestion regions, hence eag the computation load of tile
coloring.

In addition, a task window is used to restrict the number of nets being examined for
concurrency in each iteration. In some cases, congestiongi®ns contain a large number of
nets. The task window can e ectively limit the search space al speed-up the dependency

tree construction (Section 5.8.3).

5.8 Implementation

This section discusses details of the GPU-CPU router implerantation. It focuses on
several key issues such as the maze routing implementatiommahe GPU (5.8.1), e cient
GPU implementation of Scheduler (5.8.3), directional congsted region identi cation algo-
rithm (5.8.4), the bounding box expansion method (5.8.5), aad distribution of nets among

CPU and GPU threads (5.8.6).

5.8.1 Maze Routing Implementation on GPU

The GPU router uses the parallel Lee algorithm [75] to nd the weighted shortest
paths. This widely applied approach, although known for its high memory usage and slow
search speed, is an attractive candidate for implementatio on parallel systems.

Typically, the front wave expansion scheme of the Lee algothm can be parallelized,

allowing us to simultaneously explore the vertices at the sme depth, which are de ned as

70

frontiers. This concurrency model enables us to utilize the GPU's larg number of threads
in a single block to exploit ne-grain parallelism during th e concurrent frontiers expansion.
This concurrency model is shown in Figure 5.10.

In addition, the router can safely perform multiple wavefront expansions and back
traces in parallel without causing collision. This level ofparallelism is coarse-grain, hence is
exploited by the GPU's grid blocks. It should be mentioned that no global synchronization
mechanism is required among the GPU thread blocks when routig multiple nets in parallel,
since the nets are mutually independent. This concurrency radel is illustrated with Figure
5.11.

Another factor that makes the Lee algorithm appealing to GPU architecture is the use
of simple grid arrays to represent the routing map. No compl& data structure is required
to store the pending route candidates. In this implementaton, a xed-sized at memory is

used to store the costs of expanding paths.

.,

.
S
A
~
~
e
~ J
B
~ ’
R LTS S

T
T
m_

|

Fig. 5.10: Path nding in a GPU: The propagation starts from t he source node. The breadth-
rst search lls up the entire search region, and continues wntil all frontiers are exhausted.
Then the router back traces from the target node to nd the shortest weighted path.

71

Fig. 5.11. GPU routing overview: Each thread block nds route for a single set of source
and sink. The routing is done locally on the shared memory of &h thread block.

The following section explains the GPU-based Lee algorithmin detail. Like the se-

guential version, the GPU-based Lee algorithm is divided io two phases:

Wave Propagation: In this phase, propagation starts from the Source tile. The
search stops when the frontiers are all exhausted, hence guamtees all possible paths
within the search region are traversed. Details of the wave ppagation approach is
described in Algorithm 5.1, with the explanation of terms in Table 5.1. The algorithm
describes the routing kernel executed on each GPU thread. Eh GPU thread is
mapped to a tile on the routing grid. Each tile is indexed usirg the corresponding
GPU thread ID (tid). If the tile is identi ed as a frontier tile, then the GPU thr ead will

try to propagate to the neighboring tiles, which are indexedas nid in the algorithm.

Back Tracing: In this phase, the GPU kernel essentially reverses the proggtion
direction. Starting from the Sink tile, the route with the least cost is traced and the
traversed edges are marked as the resulting path until theSource tile is reached. In

the end, only one successful routing path is returned by the &rnel.

72

Algorithm 5.1: GPU Lee algorithm kernel.
1. tid getThreadlD
2. if Frontier [tid] then
3: Frontier [tid] false

4. for all neighborsnid of tid do

5: Edge V ertex(tid;nid)

6: if Edge exists then

7 AddedCost TileCost[tid] + EdgeCos{Edge]
8: if AddedCost < TempTileCost[nid] then

9 TempTileCostnid] AddedCost

10: end if

11 end if

12: end for

13: end if

14: SYNCHRONIZE -THREADS()

15: if TileCost[tid] > tempTileCost [tid] then
16: TileCost[tid] tempTileCosttid]
17: Frontier [tid] true

18 DONE false

19: end if

20: tempTileCost[tid] TileCost|tid]

This design integrates the propagation and back tracing phaes into one CUDA kernel
function instead of two separate ones. Doing so reduces theverhead of loading intermediate
data between the shared memory and device memory, and the oxleead of additional kernel
launch.

This algorithm is fundamentally di erent from the previousl y proposed BFS algorithms
for GPUs [76, 77], since (1) the algorithm tackles the weighed shortest path problem; (2)
an individual 2-pin net is routed within each thread block. T herefore, performance boost

is attained by routing large amount of nets concurrently.

5.8.2 GPU Memory Arrangement

The performance of a GPU application is largely dependent orits memory arrange-
ment. This section explains the GPU memory arrangement to eable high throughput maze
routing on the GPU.

In the GPU Lee algorithm, the costs of traversing tiles are aranged in grid arrays,

73

Table 5.1: GPU Lee algorithm notations.

Term Description

Frontier Boolean list that marks the
frontier tiles in the current
iteration. Contains source

vertex initially.

EdgeCost Array that stores cost of all
edges.
V ertex Function that returns the

Edge between two Vertices.

AddedCost Intermediate variable to store
the new tile cost.

TempTileCost Array that stores cost of
traversing tiles. Initialized as
in nite (Inf.).

TileCost Array that stores minimum
cost of traversed tiles.
Initialized as Inf.

DONE Boolean indicating all

frontiers are explored.

which are stored in the shared memory. This arrangement is daonstrated in Figure 5.11.
The size of the grid is determined by the bounding box of the rating net, hence it is partial

to the complete routing grid. Individual blocks are allowed to update the local grid on the
shared memory, without synchronization to the global devie memory. This arrangement
has a much higher e ciency, but comes at the cost of generaly. Due to the shared memory
size limitation, the number of tiles that can be traversed by each thread block is constrained

to about 2500. Fortunately, this size is reasonable for the ®P in most cases. According

74

to experimental observation, more than 99% of all 2-pin netscan be tted within this area.
The vertices topology and edge cost data are stored in the GPUexture memory. The
texture memory is allocated on the device memory. But with texture binding, this memory
is cached and optimized for read-only data. Fetching from teture memory provides high
bandwidth on memory space with good spatial locality, i.e. f a cell is visited, then its neigh-
bors are also traversed. Hence, the vertices and edge costsay are binded with 3D-Texture
and 1D-Texture memories, respectively. Each cell in the vertices irBD-Texture points to
six di erent adjacent cells: -X, -Y, -Z, +X, +Y, +Z . These directions are used to identify

the edge index, which locates the cost of the edge from the edgcost texture.

5.8.3 Scheduler

The e ciency of the scheduler is critical to the overall thro ughput of the GPU-CPU
hybrid global router. On the one hand, the scheduler needs tde able to produce enough
concurrent nets for all parallel threads to consume. On the ther hand, the scheduler
needs to be light weight enough to deliver the workload in a tinely manner. This section
introduces an e cient scheduler design.

The scheduler algorithm is implemented on a GPU. The algorihm is parallelizable on a
ne-grain level, with each GPU thread dedicated to color a shgle tile. This implementation
also has low latency due to the small amount of data packageshat are copied between the
CPU and the GPU. In addition, transferring the computation t o the GPU allows us to free
signi cant CPU resources, which can be dedicated to maze rading.

The complexity of the scheduler algorithm increases as theagion size and net count
increases. In practice, the problem size is reduced using ¢hidenti ed congestion region
(Section 5.8.4). Instead of exploring concurrency on the dire routing map, the search
area is restricted to only the congestion regions, hence eag the computation load of tile
coloring.

In addition, a task window is used to restrict the number of nets being examined for
concurrency in each iteration. The task window has signi cant impact on the overall perfor-

mance of the parallel router. A short window usually leads toless trade-o in performance,

75

but might yield insu cient workloads; whereas a long window might over examine the
available concurrency, and introduce degradation in perfomance.

Figure 5.12 shows the distribution of workload verses the pallel window size on ISPD
2007 newblue2 benchmark. On the left side of the gure, insu cient workloads due to a
small window size causes most nets being distributed onto argle thread. Due to this rea-
son, the GPU thread has very low utilization rate. This problem is alleviated by increasing
the size of the task window. However, it should be mentioned liat when the window size
is too wide, the overhead of the scheduler itself begins to dninate, hence degrading the

overall router performance.

5.8.4 Congested Region Identi cation (CRI)

To discuss the CRI algorithm, the problem of nding congestead regions is formulates
by explaining several terminologies. The rst step in the identi cation of congested regions
is the generation of congestion map from the initial routingresult. A congestion map is an

X Y matrix of congestion values. Each element in the mag; is the average congestion

0.35 ‘
I cruUl
I cPuU2
0.3 [JcPu3||
o [crPu4
S 0.25 EGrPU ||
X
O] —
= 02 B '
©
()
g0.15 il
IS
Q
(&]
5 01 i
o
0.05 i
0 I |- |-
32 64 128

Parallel Window Size

Fig. 5.12: Workload distribution with di erent task window. With the increasing size of
parallel window, workload is easier to be balanced amongst BUs and GPU, but it also
comes at higher overhead.

76
of the top and right edges of cell (;j). Congestionm;; .k, is the congestion of edge between
cell (i;j) and (k;1). If let di;j . and ¢ .« be the corresponding demands and capacities of

that edge then m;; ., can be specied as

dij ki
My g = Sk 5.1
b Gijj kil &
Consequently,
by = M ji+1s + Mig i +1 (5.2)

2

All bj's are scaled with respect to the maximum such that 0 q‘} 1, where Iq(} is the
scaled value.

In order to accurately identify the congested region, adirectional expansion algorithm
is used to adaptively expand to the region in the directions hat result in the highest
congestion. Figure 5.13 best explains this situation. The korithm begins by taking the
most congested tiles (red cells in the gure) and adaptively expanding until the average
congestion for the region is below a certain threshold. Thisnethod divides the congestion
value into several congestion levels, much like NTHU-Routd34]. The number of congestion
levels to be modeled will dictate the size of each region. Inhis example, there are four
congestion levels. After these regions are found, the netsside them are routed in parallel
based on Section 5.6. Pertinent details are presented in Alyithm 5.2, Table 5.2 lists the

notations and their descriptions.

5.8.5 Bounding Box Expansion

Bounding box is widely applied in global routers. This techrigue constrains the search-
ing region of 2-pin nets within a rectangle, reducing the spae complexity of maze routing
and decreasing the solution wire length.

In the GPU-CPU router, bounding box is a crucial component fa the Scheduler to

determine nets dependencies. However, in order to allow ngtto explore a larger solution

77

Fig. 5.13: Directional expansion algorithm: Bounding box aaptively expands in the direc-
tions with the highest congestion.

Algorithm 5.2: Directional expansion algorithm.
1 1= max(b;)
280 i X;0 j Y
1: for level=1 to 4 do
2: while Avey(r) > Lg(level) do
3 expand4sides(r)
4: end while
5. while Aves(r) > Lg(level) do
6
7
8
9

expand3sides(r)
end while
while Ave,(r) > Lg(level) do
; expand2sides(r)
10: end while
11: while Avey(r) > Lg(level) do

12: expandlsides(r)
13: end while
14: end for

space, the size of the bounding box is expanded as the RRR itation proceeds. As the
remaining over ow decreases, the constraint of the boundig box can be relaxed to allow
the maze router to obtain over ow free route at the cost of longer wire length. But as
the constraint of bounding box relaxes to more than 10 times a large as the original, the
expansion stops again to avoid excessively long routes.

An adaptive method is chosen, rather than a xed parameter function, to expand

78

Table 5.2: Algorithm notations.

Term Description

r rectangle with bottom left coordinates (i;j) and top right
(k;1)

Ave;(r) average congestion value inside the expanded rectangtein

the direction of i side(s)

Lg(level) returns the lower bound value for a particular congestion
level

expanddsides(r) expands regionr in all directions

expand3sides(r) expands three sides of regiom towards the maximum
congestion

expand2sides(r) expands two sides of regiorr towards the maximum
congestion

expandlsides(r) expands one side of regiom towards the maximum

congestion

the bounding box. The search area constraint is relaxed aceding to the percentage of
remaining over ow. The size of the bounding box is kept unchaged until 99% of all
over ow is resolved. This phase passes very fast since theaehing areas are small. Then
the router linearly increases the size of the bounding box aR®RR iteration proceeds, until

its size reaches the upper limit.

5.8.6 Workload Distribution Between GPU and CPU

This section introduces the heuristic used for workload badncing. The scheduler dis-
patches workloads among the CPUs and GPU for optimum computonal throughput.
Typically, the CPU routers achieve a single solution with lower latency than the GPU
router, but the latter can achieve much higher throughput by routing multiple nets in a sin-

gle kernel call. Urgent nets, which release several subsegjt nets to be routed concurrently,

79

are more likely to be scheduled on the CPUs. In addition, netswith large bounding boxes
are also routed in the CPU due to the shared memory limits on tle GPU. The detailed

scheduling heuristic is based on the following criterion:

Routing Region Size: The GPU router has constraints on the size of the routing
region for each 2-pin net. If a workload exceeds the area lirtation, it will be scheduled

on a CPU.

Net Size Preference: The concurrent nets are sorted with respect to their problem
size. The CPU maze-router consumes workload from the largeend of the queue,

while the GPU consumes from smaller end.

Lower-Bounded Scheduling on the GPU: Since the GPU router strives for high
bandwidth, it only schedules nets to route if the number of awailable workloads meet
a certain lower boundary. Typically, this number is set to be%l of the current parallel

window size.

These criterion can dynamically consume the available worloads as quickly as possible.
The heterogeneous structure of a GPU-CPU hybrid system make it di cult to predict a
perfectly balanced schedule. Hence certain router threadare allowed to wait in idle. This

is especially the case when the number of concurrent nets israll.

5.9 Results

The GPU-CPU hybrid router is implemented with C/C++ on an Int el Quad-core
2.4GHz machine with 8GB of RAM. The GPU used in the experimentis an NVIDIA
Geforce GTX 470 with the Fermi architecture. The C/C++ code i s compiled with Intel
C Compiler 11.1; CUDA code is compiled with CUDA Toolkit 4.0. The multi-threading
framework is designed using pthread. ISPD 2007 and ISPD 2008enchmark suites are used

in the experiments shown below.

80
5.9.1 GPU and CPU Router

First the routing throughput of the GPU and CPU routers is com pared. In this ex-
periment, the same nets are scheduled to the GPU router and aisgle CPU router, then
the average wall clock time is recorded for both routers. To nake it a fair comparison, the
process includes routing, back tracing, and data transferbetween the GPU and the system
memory.

The results are shown in Figure 5.14 and Figure 5.15. The runitne comparison in
Figure 5.14 shows a linear increase of CPU router run time wh the growing number
of routing nets. Interestingly, the GPU run time slope is much atter than the CPU.
Consequently, CPU router has a much shorter latency when roting individual nets, while
the GPU can deliver a much higher bandwidth when scheduled wh multiple nets.

The relative speedup between the GPU and CPU routers is illugsated in Figure 5.15.
About 5X speedup can be observed when both the routers are sebluled with 30 nets.
One should notice that the speedup keeps growing with more beduled nets. The trend of
speedup keeps increasing as more nets are being routed. A sdep of 73X is seen if both

routers are scheduled with 1000 nets (not shown).

0.015
0.01 1.
c
2
3
@
0
0.005|
O i i i i i
0 5 10 15 20 25 30

of nets

Fig. 5.14: Runtime comparison between CPU A*Search and GPU BS.

81

Speedup (X)
w

N
T

0 5 10 15 20 25 30
of nets

Fig. 5.15: Speedup of GPU BFS over CPU A*Search.

5.9.2 Comparison with NTHU-Route 2.0

Table 5.3 shows a wire length and run time comparison againstSPD 2008 global
routing contest winner NTHU-Route 2.0. The GPU-CPU Hybrid g lobal router generates
high quality routing solutions within an average of 1.1% wire length increase to that reported
by NTHU-Route 2.0. Noticeably, this router yields the same lution quality under di erent
levels of parallelism. The results of the hard-to-route prdolems are listed in Table 5.4.

The speedups achieved by the GPU-CPU parallel model is examed in Table 5.5,
where the run time of the RRR stage is compared under di erent ©n gurations of the
parallel router. The parallel router utilizing four CPU thr eads achieves an average speedup
of 2.74X, while an average speedup of 3.27X is gained with thadditional GPU.

The speedup is highly dependent on the benchmarks. Among thd2 over ow-free
benchmarks, speedups ranging from 1.68X to 4.49X are receist under the quad-core plus
GPU platform. This observation indicates that on benchmarks with less number of con-
gested regions, there is often little net level parallelismto exploit; whereas on the bench-
marks with widely-spread congestion regions we can extraamnore concurrent nets.

Although the proposed GPU-CPU hybrid parallel router shows great potential in o er-

ing high throughput, the results indicate that the performance of parallel router is heavily

82

Table 5.3: Wire length and run time comparison with NTHU-Route 2.0 on

over ow-free benchmarks.

1-core 4-core 4-core+GPU NTHU 2.0
WL2 time® WL? timeP WL?® time® WL?2 timeP
adaptecl 5.43E6 8.04 543E6 290 543E6 2.67 534E6 9.95
adaptec2 5.29E6 1.09 529E6 0.70 5.29E6 0.63 5.23E6 2.1
adaptec3 1.31E7 8.04 1.31E7 353 1.31E7 3.34 1.31E7 10.86
adaptec4 1.24E7 1.09 1.24e7 0.95 1.24E7 0.94 1.22E7 2.5
adaptec5 1.55E7 30.66 1.55E7 9.98 155E7 9.12 1.55E7 21)9
newbluel 4.70E6 7.58 4.70E6 287 4.70E6 257 4.65E6 6.2
newblue2 7.79E6 0.82 7.79E6 0.68 7.79E6 0.64 7.57E6 1.1
newblue5 2.38E7 17.39 2387 7.87 238E7 7.38 232E7 191
newblue6 1.80E7 13.48 1.80E7 5.67 180E7 535 1.77E7 1755
bigbluel 5.63E6 10.64 5.63E6 392 563E6 3.74 559E6 131
bigblue2 9.10E6 6.79 9.10E6 3.03 9.10E6 2.78 9.06E6 8.4
bigblue3 1.30E7 4.01 1.30E7 239 130E7 233 131E7 44

a.wire length in terms of edges consumed
b.wall clock run time expressed in minutes

Table 5.4: Wire length and over ow comparison with

NTHU-Route 2.0 on hard-to-route testcases.

GPU-CPU GR NTHU-R2

MO TO WL MO TO

WL

newblue?7 4 78 352.3 2

newblue4 4 167 1389 4 138

bigblue4 2 178 2329 2 162

62

130.46
353.3%
231.04

newblue3 183 31484 108.5 204 31454 106.49

83

Table 5.5: Speedup comparison in RRR stage.

‘ 1-core ‘ 4-core 4-core+GPU

trrRr tRRR Spdup tgrr Spdup

adaptecl 7.30 216 3.38X 177 4.12X
adaptec2 0.71 0.32 221X 0.25 2.81X
adaptec3 648 197 329X 163 3.98X
adaptec4 0.26 0.12 213X 0.11 2.33X
adaptec5 28.79 8.11 3.55X 6.46 4.49X
newbluel 7.23 252 287X 222 3.25X
newblue2 0.44 030 145X 0.26 1.68X
newblue5 14.78 5.26 2.81X 4.40 3.36X
newblue6 11.88 4.07 292X 320 3.71X
bigbluel 9.83 311 316X 257 3.82X
bigblue2 6.04 228 265X 2.03 2.98X
bigblue3 272 110 247X 103 2.65X

Average - - 2.74X - 3.27X

dependent on certain properties of the benchmark. In some &s, large number of concur-
rently routable nets hardly exists. In this situation, the i nsu cient amount of independent

nets causes the router threads to wait in idle. These obsert®mns suggest that more fun-
damental research needs to be done to unveil the connectionebween the benchmarks and

the levels of parallelism that are exploitable.

5.10 Conclusion
As technology continues to scale, computational complexit of many EDA algorithms
is growing rapidly. Exploiting the computational bandwidt h of high throughput platforms

like the GPU is a prominent direction for future EDA. In this p aper, we present a hy-

84

brid GPU-CPU high throughput computing environment as a scaable alternative to the
traditional CPU based router. We show that the traditional G RP needs to be revamped
for exploiting the new computing environment. The key to our method is using Net Level
Concurrency guided by a Scheduler. The Scheduler analyzes data dependses between
nets and dynamically generates concurrent routing tasks fothe computing environment.
Detailed simulation results show an average of4X speedup over NTHU-Route 2.0 with
negligible loss in solution quality. This framework is a corcrete step towards developing

next generation global routers geared for high throughput ompute architectures.

85

Chapter 6
GPU-Based Global Router with Fine-Grain Parallelism

The previous chapter introduces a GPU-CPU hybrid parallel dobal router based on a
NLC model to parallelize workloads. The global router is tesed on ISPD 2007 and 2008
benchmark and showcases tremendous speedup over the statkethe-art sequential global
router. However, there are several limitations to this appoach: (1) The NLC model has
shown limitation in extracting enough parallel workload to fully utilize the throughput of
hardware; (2) A large bulk of data, mostly the congestion map must be kept synchro-
nized between the system memory and GPU memory, leading to aigni cant performance
overhead by the frequent tra ¢ over PCI-E interface.

To address the above issues, a new ne-grain concurrency (FG model is proposed
to mitigate the lack of exploitable concurrency of the NLC model. A GPU only routing
engine is developed to pair with the new parallel model. The awly router aims to cleanly
separate the workloads and data structures residing on CPU rad GPU subsystem, reducing
the major overhead in CPU and GPU communication. This chapte focuses on introducing

the FGC model and the new GPU-based routing engine.

6.1 Motivation

The key to e ectively harness the computation throughput of GPU is to provide it
with su cient parallel workloads. This section studies the exploitable concurrency of the
net-level dependency model. Results show that an inherentafse data dependency in the
model leads to a bottleneck of exploitable concurrency gemation, which makes it unable to
support su cient workloads for massive parallel routing on GPU, especially for the newly

emerged modern global routing problems.

86

6.1.1 Insu cient Exploitable Concurrency

The NLC model actively speculates the dependencies of workhds by examining the
overlapping of routing regions among workloads. Essential workloads without any over-
lapping region are deemed independent from each other, andra scheduled to route in
parallel regardless of their original routing order.

However, the NLC model is reported to have insu cient parall el workloads. This
e ect is studied through an experiment with a series of globalrouting benchmarks from
ISPD 2007, ISPD 2008, ISPD 2011, and DAC 2012 suites. For eacbuite, its exploitable
concurrency is calculated using the model presented by Hantal. [12]. In each iteration
of the global router, parallel workloads are extracted basd on their data dependencies.
Each workload is a 2-pin subnet, which is decomposed from a nititpin net topology. Since
multiple subnets can belong to the same net, the model enfoes a coherent policy such that
only one subnet from a net is allowed to be routed each time. Asuming enough bandwidth
to route all the workloads of each iteration, the exploitable concurrency is quanti ed as
N;ﬂ%, where Ngypnet iS the total number of subnets rerouted, andNijer is the iteration
count to complete routing them.

As a comparison of the above model, another set of experimesitare set to relax the
coherent policy enforced on workloads. This model enablesubnet level concurrency and
allows parallel routing of subnets from the same net. Theradre, conceptually it should
release a higher level of exploitable concurrency to the pailel router.

The results are shown in Figure 6.1. The net level concurrencmodel is denoted as the
strict model, and the subnet level model is denoted as the ralked model. The strict model
su ers from limited exploitable concurrency, and such limitation exacerbates in the most
recent benchmarks, i.e. the exploitable concurrency of DAR012 benchmarks are only half
of the ISPD2007 benchmarks. In contrast, the relaxed model des not show a similar trend,
demonstrating better robustness in the capability of concurent workloads extraction. In
addition, up to 3X exploitable concurrency is observed in thre relaxed model.

Unfortunately, although the relaxed model delivers promisng exploitable concurrency,

87

>

(&)

c

e | B 1sPD2007 |
g I 1SPD2008 3.0X

8 15F |[_]isPD2011 2.8X |
[}

2 [|bAc2012

g 1 1
£

3

L|J057 7
>

< O

strict model relaxed model

Fig. 6.1: Exploitable concurrency in ISPD2007, ISPD2008, $PD2011, and DAC2012 bench-
mark suites. The y-axis is hormalized to the strict model of ISPD2007.

it typically leads to a large degradation of solution quality. the following section will elabo-
rate on the cause of degradation, and show that the relaxed natel is not a su cient model

for global routing parallelization.

6.1.2 Degradation of Routing Quality

Existing parallel global routers unanimously exploit net level concurrency rather than
the subnet level [12,14,71]. This design choice is due to antrinsic false data dependency
among subnets of the same net. Figure 6.2 shows a typical subhdecomposition from a
net, where subnets are allowed to share certain paths to cotrsict the net topology. Global
routers extensively exploit these shared paths to generatsolutions with competitive wire
length. Figure 6.2 illustrates this process. In each step, e router serializes the workload
of each subnet, and reuses the existing routed paths to negate a new route around the
congested regions. The resultant net topology in Step 3 hasraoptimal wire length as a
result of this strategy. One can observe that the additionalwires in subnet; and subnet;
both take the least length to detour around the obstacles.

In contrast to the above strategy, the relaxed model ignoresthe intrinsic false data
dependency among these subnets. In this case, order in whidubnets are routed is only

based on their data dependencies. That is, if there is no roumg region overlapping between

88

Shared
Path subnet3 subnet;
= subnet, subnet,
sun S
Path
subnet,
2-Pin subnets Step 1
Decomposition Rip-up subnet 1
Route subnet 1
Tsubneg
o subnet2 lé subnet, l ‘!'}Adgled
E> wire
subneq
subnet1 ——
Step 2 Added wire Step 3
Rip-up subnets 2,3 Route subnet 3
Route subnet 2 (Optimal wirelength)

Fig. 6.2: Net level concurrency serializes the subnets of # same net to rebuild the net
topology around obstacles, illustrated by the gray areas.

subnets, then they are deemed independent from each otherf there is overlapping, then
the net ordering rules apply. As evident in Figure 6.3, subnet; and subnet; are routed
in parallel because they have no overlapping in routing regins. Subsequentlysubnet, is

routed to complete the net topology. As a result of this strategy, the chain of false data
dependency is disrupted. The global router generates long@verall wire length for the net,

leading to degraded solution quality. The additional wire length is much longer than that
in Figure 6.2, Step 3.

The above degradation proves that the relaxed model is not sgient as a parallel
model for global routing. Despite its advantage in the amoum of exploitable concurrency,
it tends to produce degraded solution quality for multi-pin nets. Instead, a design overhaul
on workload decomposition is the key to supply enough expltable concurrency for massive

parallelism. In the following section, a parallel model bagd on a Steiner edge decomposition

89

subnet; subnet;
subnet, Added
wire
I > Psubnet,
r——
subnet, Added wire
Step 1 Step 2
Rip-up subnets 1,2,3 Route subnet 2

Route subnets 1,3 in parallel (Non-optimal wirelength)

Fig. 6.3: Subnet level concurrency promotes concurrency, ui relaxes the false data depen-
dency, leading to degradation of solution quality.

strategy is proposed. This model e ectively removes the intinsic false data dependency,

and provides abundant workloads for the parallel GPU router,

6.2 Parallelism on Steiner Edge
This section shows a novel parallel model to mitigate the lak of exploitable concurrency

in the existing one. This model has several advantages, listl as follows:
The model can extract abundant exploitable concurrency;
The model does not lead to solution quality degradation;

The model is bene cial for GPU implementation.

6.2.1 Improving the Exploitable Concurrency

The new model exploits parallelism on Steiner edges to mitigte the drawbacks of
existing parallel models. Figure 6.4 demonstrates this moel, which reuses the example
from Figure 6.2. The multi-pin net is decomposed into ve Staner edges. Steiner edge 1
and 4 are routed over two obstacles respectively. Now theset@ner edges are re-routed to
create an over ow free topology. Two concurrent threads areused to re-route the Steiner

edges. In each thread, the over owed Steiner edge is repladecompletely by a new one

90
within the routing region marked by the dotted lines. The new Steiner edge subsequently
adjusts the location of Steiner point to rejoin the net topology. The resultant net has an
optimal wire length. Importantly, the parallel model produ ces the same routing solution
regardless of any order in which the parallel threads are exmited.

The major di erence in this approach from the 2-pin subnet basd approach is that
Steiner edges have no shared paths. Eliminating the sharedagphs play a key role in ex-
ploiting concurrency. It removes the false data dependencyamong workloads. Evident
from Figure 6.2, exploiting the shared paths creates an imptit chain of false dependencies.
Speci cally, in Step 1, subnet; depends onsubnet,'s path; in Step 2, subnet, depends on
subnet;; and subnet; depends onsubnet, in Step 3. By removing the shared paths, Steiner
edge based decomposition e ectively eliminates the chain ofalse data dependencies. The
routing solution of geographically independent Steiner edes is no longer dependent on the
sequence in which they are routed.

This model allows parallelizing ne grain workloads. Sinceeach workload is a Steiner

edge, the granularity of each workload is much smaller than he net level concurrency

Thread 2
Reroute
Thread 1
edge 4
Reroute g
edge 1

Fig. 6.4: The net is decomposed into ve Steiner edges that dmot have any shared path.
Steiner edges 1 and 4 are re-routed in parallel in an asynchnous manner.

91

model. Such ne grain concurrency allows multiple workloads from the same net to be
routed simultaneously, as long as no data dependency existsIn addition, as illustrated
in Figure 6.4, the size of the routing problems are typicallysmaller than that of the 2-pin

subnet. As a result, signi cantly more workloads can be pardlelized.

6.2.2 Data Isolation for GPU Router

The proposed model has several intrinsic advantages to en&bglobal routing on het-
erogeneous architectures. Typically, a major bottleneck bGPU application lies in the data
communication between GPU and CPU through the PCI-E bus. Eliminating frequent data
exchange and reducing the size of the exchanging package y$aan important role in GPU
application optimization. This design achieves such a goathrough data isolation.

The Steiner edge based approach facilitates the isolationfdwo major data structures
for global routing: the routing grid edge usage and the net t@ology representations. First,
the array that stores the edge usage of the entire routing gd can reside completely within
the GPU device memory, facilitating more computational intensive tasks such as maze
routing on GPU. Due to the absence of shared path, GPU can salg update edge usage by
replacing the usage of old Steiner edges with newly routed phs. Second, the data struc-
tures that represent net topology are stored in the system mmory. These data structures
often require inherently sequential operation and dynamicallocation, making them more
e cient on the CPU. This information is used to examine the data dependencies and create
concurrent workloads for GPU router.

Between the two processors, an uplink and downlink data chanel is de ned for com-
munication of di erent purposes. The uplink channel sends wakload information to the
GPU for maze routing. The data package includes only sourceral sink nodes and bounding
box information. By completion of the routing, GPU uses the downlink channel to send the
routed paths back to CPU, which updates the net topology repesentation in system mem-
ory. Essentially both the uplink and downlink channels are mplemented with the CUDA
memory copy APIs. Only essential data required for routing 5 transmitted through these

data channels to limit communication overhead.

92

Figure 6.5 explains this process in a step by step manner. Merdetails on this imple-

mentation will be presented in the following sections.

6.3 GPU Framework Overview

This section explains the GPU based parallel routing framewrk. This framework is
demonstrated in Figure 6.5. It is largely divided into four stages: (1) congested region
analysis, (2) searching for and scheduling parallel worklads, (3) routing the workloads and

committing their edge usages on GPU, and (4) adjusting topabgy to accept the new routes.

Build workload queues

Scheduler [6]!

A

, Uplink workloads

) (8] |
CHIgiigiig

|, Downlink routed paths

Commit ne ;
"W MEEEE

routes L I L e e .

\

GPU
Router

v

Fig. 6.5: The main GPU routing framework.

93
6.3.1 Congestion Analysis

The rst stage examines edge usage across the entire routingrid given an initially
routed global solution. The edges whose usage exceed thempgacities are congested. They
are distributed coherently on the routing grid, spread in isolated regions. A distribution of
congested regions is captured, and the regions are corre&t with the corresponding Steiner
edges, which will be rerouted to resolve the congestion. Eaccongested region relates to one
set of Steiner edges. The router explicitly creates an ordein which these Steiner edges are
scheduled to route. Typically, Steiner edges covering lamgr area are given higher priority
to better create detour without introducing excessive wirelength overhead.

The Steiner edges are organized in multiple ordered queuenstead of a single queue
to improve the e ciency of parallel workload extraction. Si nce these regions essentially
partition the entire routing map into multiple independent sub-maps, the Steiner edges
from di erent congested regions are naturally isolated and tave no explicit dependencies.
Similarly, the Steiner edges within each queue all route pasthe same congested region,
they are very likely to have mutual data dependencies. Therfore, each ordered queue hides
the non-parallelizable workloads within its list, while exposing the concurrent workloads to
the scheduler. Using an e cient lookup from the head of each ist, the scheduler is highly

likely to extract only independent workloads.

6.3.2 Scheduling

The scheduler stage searches for Steiner edges that are iqindent of each other for
parallel routing. When the bounding boxes of two Steiner edgs do not overlap, these
Steiner edges are considered independent. These Steinerged are thereby issued to the
ready list. In Figure 6.5's example, ve Steiner edges from geues 1, 3, 4, 5, and 6 are
pushed to the ready list for parallel routing, while workload 2 cannot be issued due to a
data dependency. In an actual benchmark, however, the numhreof ordered queues is often

in hundreds, and the ready list is quickly populated with independent Steiner edges.

94

6.3.3 GPU Routing

The GPU routing stage re-routes all Steiner edges gatheredrdm the ready list. The
bounding box used for scheduling of the Steiner edge is re-ed by each routing thread on the
GPU to restrain the search region. First, the routing thread rips-up the over owed Steiner
edge, reducing the corresponding edge usage on its path. Due data isolation explained
in Section 6.2.2, the edge usage data are easily accessed be IGPU on-board memory.
Subsequently, the GPU thread reconnects the net with a multisource multi-sink A* search
engine. The router launches independent search agents foh¢ workloads, and negotiates
around the congested edges to identify new paths. Finally, ie GPU again changes the

global edge usage to re ect the newly created Steiner edge.

6.3.4 Commit Topology
The nal stage adjusts the Steiner trees according to new pats found by the GPU

router. The new path is returned from the GPU to CPU through downlink communication.

The change to the net topology takes place on the CPU, where th newly routed Steiner
edges from GPU are committed to their Steiner trees one by oneln addition, the sched-
uler is informed with the completed Steiner edges. Subsequeindependent Steiner edge
workloads are released to the ready list according to an upda to the data dependencies,
hence starting the following iteration. This cycle is repeded until all the Steiner edges in

the ordered routing queues are visited and rerouted.

6.4 A* Search on GPU

This section explains the GPU based multi-thread global roding. It is designed to
enable multi-source multi-sink maze routing to t the A* search algorithm for the Steiner
edge decomposition. A GPU A* search algorithm is described Y Bleiweiss [78]. The GPU
implementation in this work is largely based on Bleiweiss'smethod, but with the following

modi cations to optimize for the global routing problems.

95

6.4.1 Routing Grid Textures

The GPU router implementation encapsulates the sparse rouhg grid graph in an
adjacency list data structure. Being read-only, this graphis stored as a set of linear device
memory bound to texture references. The CUDA device memory hat is read through
texture fetching has performance bene ts, since the data iscached and potentially enables
fast localized access.

The routing grid graph data structure is designed purposeflly to enhance the spacial
locality of the access. The set of data is optimized for the gd graph of a global routing
problem, including an edge list and adjacency list. Each edg entry contains its capacity,
usage, blockage, and history cost data. The edge list seriaks all the adjacent global
edges into one collection of edges. The adjacency directogontains an o set into the edge
list. Each adjacency directory corresponds to a tile on the outing grid. Since each tile
on a routing layer connects to two other tiles in opposite diections either horizontally or
vertically, two consecutive reads in the edge list is requied to fetch both edge costs. Since
via edges have a constant cost and no via usage is countediia edges do not need to occupy

the texture memory.

6.4.2 Shared Memory Management

The shared memory is an on-chip memory that has much smaller aess latency than
the GPU global memory. All threads within a block have accesgo the same shared memory,
which allows user-managed data caches. The use of these cashcan signi cantly improve
the performance of a GPU application. Unfortunately the siz of shared memory for each
block is very limited. Typically the maximum shared memory capacity per block is 48KB
for a Fermi NVIDIA GPU.

In general, the A* search data structure for most routing workloads can t within the
shared memory space, thanks to their relatively small sizes Through experience, there

are more than 99% of the Steiner edge rerouting problems satiying this condition. To

1The via edge cost is de ned as a constant cost in the current industry benchmarks, although it might
not be the case for real world designs.

96

maximize the usage of shared memory for each workload, one GPblock is dedicated for
each routing instance, allowing the routing thread to maximize the utilization of low latency
access on-chip memory. Also all threads within the block carcollaborate when possible,
maximizing the memory access bandwidth. However, certain pblems requires the A*
search to propagate through a large quantity of nodes, in wiih case the storage of nodes
in the frontier set (open set) can grow beyond the capacity othe shared memory.

A simple mechanism is designed to the GPU router to facilitae very large search space.
The min-heap, with which the priority queue for A* search is implemented, resides in the
shared memory till the space is about to be exhausted. Then gnadditional levels of the
heap are stored in the device memory. In this case, the heap epations on the items stored
in the device memory might su er from long access latency. To &oid this performance
penalty, the size of the heap is minimized so it will be more kely to t within the shared
memory space. The method sets an upper limit of a path's costd be allowed entering the
frontier set. This threshold is typically set as the path cog of the original Steiner edge
before ripping it up. As a result, all paths with cost exceedng that of the ripped-up path
are not considered to enter the priority queue, hence reduaig the size of the frontier set.

This mechanism is e ective for the GPU A* search implementation. The shared mem-
ory is typically enough to store a heap of 11 levels deep, coaining 2047 items. For common
cases this storage space does not draw any limitation to the Asearch. Yet for rare corner
cases where extra space is required, one additional level loéap can double its capacity, sig-
ni cantly relieving the constraint placed on storage space For each heap level in the device
memory, only one device memory access is required for a heap or heap down operation,
given that coalesce memory access is used on the nodes withetlsame root. Therefore, a

linear increase of performance penalty results in an expom#ial growth of storage space.

6.4.3 Assistance Processes
Prior to the actual routing, the GPU router needs to initiali ze the source and sink
nodes and bounding box bundle for each routing thread. Sour nodes are added to the

initial open set for the A* search; sink nodes are marked dowras destinations of the search,

97

and initializes heuristic cost function, which is de ned asthe shortest distance from any tile
to all the sink nodes.

Once the routing of all threads are nished on the GPU, the GPU router needs to
update the edge usage. Each path's corresponding edge is falion the global grid and
their usages are changed accordingly. The process is straigforward, but since the texture
fetch is read-only, this process needs to unbind the textureeference to allow write access

to the device memory.

6.5 Experimental Results

This section shows experimental results. The proposed palal routing framework is
coded in C++. The GPU portion is development using NVIDIA CUD A. The experiments
are done on an Ivy bridge 8-core (four physical cores) procesr with 16GB RAM. The GPU
of choice is a Geforce GTX 470 graphics processor. The maindos of these experiments
is to show the router's strength in parallelization, and its impact on the solution quality.
The performance of the proposed parallel router is comparecgainst two state-of-the-art
routers: NCTUQr2 [14] and BFG-R 2.0 [79]. The DAC 2012 benchrark suite is used to
conduct the study. The placement solutions of the benchmarlkare provided by ripple placer
in the DAC 2012 contest [52]. Both routers comparing to are hghly successful, and adopted
by the DAC 2012 contest as the evaluation tools. To the best othe author's knowledge,
these are the only available routers with the ability to parse the DAC 2012 benchmarks.

The results are shown in Table 6.1. The rst row of the table stows a comparison be-
tween the router's CPU and GPU implementations. The implementation on both architec-
tures is made consistent in order to deliver as credible as Esible performance comparison.
The GPU router delivers a notable improvement in run time through parallelization, an
average of 5.3X speedup is achieved. In addition, these spkes across all benchmarks are
very uniform, showing excellent robustness of the parallemodel.

Inherent from the NLC model, the ne-grain parallel model delivers a \deterministic"
solution. The scheduling sequence is consistent regardesf the number of parallel routing

threads, leading to an exact match in the solution wire lengh and over ow outcome of

98

Table 6.1: Routing performance comparison between the CPUrad GPU routers. The
comparison focuses on solution from the RRR stage.

FGC Router (CPU) FGC Router (GPU)

MO2 TOP runtime¢ 2DWLY MO TO runtime 2DWL

sb1l 0 0 38.8787 10885057 O 0 7.3050 10885057
shl2 25 937 317.939 12200901 25 937 53.7688 12200901

sh14 0 0 72.0268 7265608 0 0 14.3244 7265608
sh16 0 0 54.2831 7945358 0 0 10.6978 7945358
sb19 0 0 19.2866 5059133 0 0 3.8462 5059133

sh2 255 90666 502.681 20850372 255 90666 82.0863 20850372
sh3 142 18683 424.346 12608778 142 18683 70.6665 12608778

sh6 0 0 132.884 11130475 O 0 23.3166 11130475
sb7 0 0 155.114 14572748 O 0 27.2013 14572748
sh9 0 0 64.9287 8717550 0 0 12.8402 8717550

a. Maximum Normalized Over ow.

b.Total Normalized Over ow.

c. Expressed in Seconds .

d. The 2D wire length is reported at the end of the RRR stage.
the CPU and GPU implementation. These results have shown thathe ne-grain parallel
model can e ectively parallelize the emerging global routirg problems on massive parallel
architecture without any impact on the solution quality.

Table 6.2 lists the routing solutions of BFG-R 2.0 and NCTUgr2 global routers under
the same test environment. The amount of speedup (in times) ad increase of wire length
(in percentage) in comparison to the GPU router are listed inTable 6.3. The sb12, sb2, and
sb3 cases are marked as N/A since the GPU router is unable to coerge on an over ow-free
solution.

Comparing the GPU router to BFG-R and NCTUgr2, it is evidenti al that the GPU

router has its strength in run time. On an average, the GPU paillel router is 8.29X

and 3.06X faster than BFG-R and NCTUQgr2 respectively, with a maximum speedup of

Table 6.2: Routing performance comparison between two sta-of-the-art routers.
Only RRR stage run time is counted to rule out the e ects of pre- and post-

routing stages from these routers.

99

BFG-R 2.0 NCTUgr2
MO TO runtime 2DWL MO TO runtime 2DWL
sb11 3 3147 53.481 10845494 0 0 28.7 10732137
shl2 4 13781 16252 11900644 O 0 52.32 11756906
shl14 4 2490 77.965 7151014 0 0 46.04 7095985
shl6 3 1817 107.5 7850695 0 0 36.74 7790863
sh19 3 1862 39.216 4990464 0 0 10.37 49183[76
sbh2 9 31306 789.29 19523801 O 0 515.45 19530541
sh3 8 24821 44326 11777479 O 0 208.32 11852632
sh6 4 8019 21322 10854467 O 0 64.26 10769850
sb7 6 14003 196.33 14233563 O 0 68.32 14134562
sh9 5 8172 111.28 8556826 0 0 36.75 8499331

Table 6.3: Normalized speed up and wire length comparison ween the GPU router and
the other routers. The percentage of wire length increase idenoted as \WL+".

BFG-R 2.0 NCTUgr2

Speedup| WL+ | Speedup| WL+
sb1l| 7.32X | 0.36% | 3.93X | 1.42%
sb12| N/A N/A N/A N/A
sbl4| 5.44X | 1.60%| 3.21X | 2.39%
sb16| 10.05X | 1.20% | 3.43X | 1.98%
sb19| 10.20X | 1.37%| 2.70X | 2.86%
sb2 N/A N/A N/A N/A
sb3 N/A N/A N/A N/A
sb6 9.14X | 254% | 2.76X | 3.34%
sb7 7.22X | 2.38% | 2.51X | 3.10%
sh9 8.67X | 1.87% | 2.86X | 2.56%
avg. 8.29X | 1.62% | 3.06X | 2.52%

10.20X and 3.93X. It should be noted that only the set of run time from the rip-up and

re-route (RRR) stage

is collected for a more credible compason. The other routers both

100

have sophisticated pre-routing and post-routing stages tat take a notable portion of the
entire run time, while the GPU router mostly rely on the RRR ph ase, with only a quick
edge-shifting stage prior to the RRR.

The nal part of this section compares the GPU router's solution quality with that
of the other routers. In a routability comparison, the GPU router stands in between the
others, nishing seven out of ten benchmarks with over ow free solutions. The BFG-R
router is unable to nish any of the tested benchmarks with over ow free solution, while
the NCTUgr2 can nish all the benchmarks without any over ow . In the wire length
comparison, the GPU router produces slightly longer total wre length. In average, its total
wire length in the routed benchmarks are 1.62% and 2.52% higdr than that of BFG-R
and NCTUgr2, respectively. This marginal increase of overl wire length exist compared
to BFG-R and NCTUgr2, which both have enjoyed years of develpment and parameter
tuning. On the contrary, as a newly developed global router,the GPU router does not yet
have the same infrastructure necessary to produce similarauting qualities. Nevertheless,
the slightly lesser solution quality is an inherent product of inferior design sophistication,
and should not be considered as a result of the parallelizatn scheme.

Overall, the proposed GPU global router has shown success iparallelizing the global
routing problem on the massively parallel architecture. The GPU implementation outper-
forms the leading global router in run time. The concurrencymodel does not introduce any

impact on the solution quality, delivering a \stable" paral lelization.

6.6 Conclusion

This work presents an e ective way to parallelize global rouing on GPU architecture. It
tackles the lack of exploitable concurrency in emerging gloal routing problems, and mitigate
it with a global router designed based on the Steiner edge demposition scheme. The
GPU router exploits ne grain parallelism on the level of Steiner edges. The experimental
results con rm that this model produces deterministic solutions, and is capable of achieving
signi cant speedup through parallelization on GPU architecture. The router outperforms

some of the most success global routers from open literaturéOn Geforce GTX 470 GPU we

101

achieve 2.51X to 3.93X speedup over NCTUgr2, and 5.44X to 120X speedup over BFG-R
2.0.

102

Chapter 7
Congestion Analysis

As routing becoming increasingly challenging with the rapd advance of technology
scaling, the layout routability has become a fundamental olstacle in achieving the overall
design convergence. In this context, the role of congestioanalysis is increasingly important.
Typically, the congestion analysis provisions the upcomig routability issues in routing and
post-routing processes, and provides actionable items tohe upstream tools, such as the
placer and oorplanner, to mitigate the identi ed problems . Consequently, the problems
created for the router engines are much easier to route, heecleading to a design that is
more likely to converge.

However, due to the limitations of the existing models of cogestion, few congestion
analysis tools are be able to accurately reveal the problent& regions on the layout within
a short time window. By studying the distinction between fundamental causes behind
congestion, which have profound implication towards theirresolution in upstream or down-
stream tools, this work nds it important to integrate a new m etric to provide an accurate
feedback of the causal relationship between layout interaonect patterns and the resultant
congestion.

In the light of the above notion, this study proposes a framework called dynamic
orthogonal congestion (DOC) analysis. DOC studies the patérns of layout interconnects to
predict the congestion and problematic regions. It encompsses two major components: (1)
an orthogonal congestion correlation coe cient that e ecti vely captures the hard-to-route
regions, and (2) a routing framework based on dynamic edge #ting technique. To present
DOC framework, the rest of the chapter is organized as follow: Section 7.1 de nes the
problem formulation; Section 7.2 outlines the motivation of this work; Section 7.3 describes

the orthogonal congestion correlation coe cient in detail; Section 7.4 explain the routing

103

mechanism of the DOC framework; Section 7.5 showcase the egpmental results of DOC,

and Section 7.6 concludes this chapter.

7.1 Problem Formulation

In this section, a problem formulation is given to explain the congestion analysis prob-
lem, and a set of denotations is presented for use throughouhe rest of this chapter. The
global routing problem is formulated by partitioning the ro uting region into a 2D grid map.
Each tile is considered a global cell (gcell), in which all plgsical pins within its region are
mapped to cell's center. A network topology is de ned as a gril graph G = (V; E), in which
the vertex set V denotes a set of gcell tiles, and the edge sd& denotes the boundaries
between two adjacent tiles.

Each edgee has a capacity limit, denoted asCe. When net topologies pass through an
edge, they use certain resources of the edge, denoted as usafy. Congestion G on edge

e is de ned to be the ratio between the edge usage and capacity:
Ge = (71)

Therefore, a congested edge hase 1.
In addition, the over ow O¢ on edgee is de ned as following:
8
20 Ue Ce

Oe = S . (72)
" Ue Ce Ue > Ce

7.2 Motivation

The most commonly used method to present the congestion forlgbal routing prob-
lem is by generating a congestion heat map. Figure 7.1(A) preent heat map uses visible
spectrum to represent the congestion on the entire routing gd. Warm spectrum translates
to highly congestion region, and cold spectrum to low congemn. The white spaces in this

map presents regions with no routing utilization.

104

(A) Congestion heat map.

(B) Congestion heat map on horizontal (C) Congestion heat map on vertical
layer. layer.

Fig. 7.1: Comparing congestion heat map and orthogonal corestion heat maps. Benchmark
adaptec2 from ISPD 2007 suite.

The heat map in Figure 7.1(A) is generated with adaptec2 benchmark from the ISPD
2007 global routing suite [66]. The map is rendered after thenitial routing stage, during
which each net is routed with rectilinear Steiner minimal tree (RSMT) using ute [72].
Each pixel on the map can mirror to a corresponding gcell on tle routing grid. A typical
method to calculate the congestion of a gcell is to take the arage of the congestion on its
vertical and horizontal edge.

The congestion heat map presented in Figure 7.1(A) has limi@tions in abstracting

105

congestion information. Although it captures the geographcal distribution of congested
regions, the physical meaning of calculating the gcell corgstion by averaging its orthogonal
layers is very obscure. On a routing grid the horizontal and ‘ertical tracks represent phys-
ically separated interconnect layers. Each layer houses farconnect going in one direction.
Therefore, when an interconnect occupies one layer, its uga has no spatial correlation
with that of another layer connecting in the orthogonal direction. As a result, the typically

method to visualize a congestion map oversimpli es the absfiction with false correlation,

which might mislead the designers and tools with inaccurateénformation.

Alternatively, separating the congestion on horizontal ard vertical layers presents a
much clearer vision of the congestion. This observation isi®wn in Figure 7.1(B) and Fig-
ure 7.1(C), which represents horizontal and vertical congstion, respectively. Interestingly,
compared to the original heat map in Figure 7.1(A), several derent congested regions can

be identi ed with distinctive attributes, listed as the fol lowing:

Region 1 highlights the congestion region in the top middle portion in the three heat
maps. In the rst heat map a region of highly congested regionis identi ed. However,
the rest of the heat maps reveal that the congestion only exisin the horizontal layer,

but not the vertical layer.

Region 2 highlights the congestion region in the lower left portion in the three heat
maps. The same signature of highly congested region is obsable in all three heat
maps. Indicating that both horizontal and vertical directi ons have high density of

routing usage.

Region 3 highlights the congestion region in the upper right portion in the three
heat maps. Similar to region 1, the heat signature only appei in the rst heat map

and the vertical heat map. The horizontal layer is relatively congestion-free.

The heat signature patterns identi ed in Region 1 and 3 are treated very di erently
from that of Region 2. In these two regions, since the conge®n is only dominant in one

layer, the empty usage in the orthogonal direction allows the global router to distribute

106

the routing resource elsewhere via detours. Therefore, tls® congested regions are likely to
be solved with ease by a global router. In contrast, since bdt directions in Region 2 are
highly congested, creating detours in this region is signicantly more di cult, indicating a
hard-to-route area for the global router.

As a summary, the observed congested regions can be categmid into two types of

congestion.

Branch Congestion : The congested region exists in long stripy pattern, and on}
consumes routing resources in one direction. The cause oféhbranch congestion is
typically long nets sharing a common path. Therefore, by redrecting the long nets

with detours, global routers can easily solve the branch cogestion.

Bush Congestion : The congested region appears in clustered regional pattas, and
shows high correlation of congestion between the orthogohdayers. The cause of the
bush congestion is dense population of pins that are conneetl with relatively short

interconnects. The routing resource is consumed in both dictions, making the bush

congestion di cult to solve.

7.3 Orthogonal Congestion Correlation

This section proposes the orthogonal congestion correlain (OCC) coe cient to cap-
ture the di culty of routing In the light of the above observa tion. Based on the previous
observations, this section focuses the discussion on the dé@ion of OCC model.

The purpose of OCC coe cient is to abstract and quantify a \ro ute di culty” metric for
global routing. The example shown in Section 7.2 asserts thausing a fusion of orthogonal
congestion to represent the routing di culty can be misleading. For instance, the amount
of usage over ow in a branch congestion region might surpasthe one from bush congestion,
but the former can usually be solved, while the later can leado very poor routability. OCC
coe cient is de ned purposely to expose the bush congestion and is less sensitive to the
branch congestion. Therefore, the coe cient can e ectively capture the poor routability

regions that are responsible for the hard-to-route problers.

107
To achieve this purpose, OCC is de ned as the correlation of sage over ow in hori-
zontal and vertical edges within a square regiorr. The gcell in the center ofr is assigned

with the value of OCC. OCC is calculated using the following euation:

P P o
OCC, = L 5 %rpf (7.3)
ohe - 0y?
ND 1 e NG 1 e

(0]

where e denotes all edges within regionr, and O denotes the over ow of an edge, the
superscript h or v denotes horizontal or vertical layer. No denotes the number of over ow
edges in the layer.

By generating an OCC heat map, the congestion analysis is abl to pinpoint the
di cult-to-route regions. Figure 7.2 is a OCC heat map rendered after the initial rout-
ing stage ofadaptec2 benchmark.

As evident from the OCC heat map, several regions for the inital routing solution are
highlighted. These regions e ectively pinpoints the hard-to-route portions of the current
layout. However, the information presented in the early routing stage is still inaccurate

since the routing solutions are created with RSMT. Therefoe, its important to integrate

Fig. 7.2: OCC heat map after initial routing. Heat map highli ghts major hard-to-route
areas.

108

a global router to the DOC framework. The router targets to it eratively resolve branch
congestion and expose bush congestion, which are typicallitard to route. The routing
di culty is monitored with the OCC coe cient, and stop the ro uting process when the

OCC reading converge to a steady level.

7.4 Routing Technique

This section explains the routing techniques of DOC framewdk. A distinctive charac-
teristic of DOC router is to rapidly eliminate the branch con gestion, while solving the bush
congestion as much as possible. DOC is designed from groungb-to use dynamic pattern
based moves to generate new net topologies. These moves aemdered to avoid congested
regions, and limit solution wire length by taking the net top ology into consideration.

The DOC router is based on the widely used rip-up and reroute RRR) framework for
global routing. For a given net, the basic ow of DOC routing t echnique is listed as the

following:

Identify the congested portion of the net Using the RSMT representation to rapidly

pin point the congested portion of the net.

Generate detour to avoid the congestion A combination of patterns and dynamic
edge movements are used to create detours. In comparison toame routing, these

techniques can generate new paths much faster.

Commit the new path to the net topology After a new path is found to replace to

original one, it is committed back to the RSMT representation to renew the multi-pin

topology.

A collection of moves are presented in this section. These mes are performed to over-
owed Steiner edges, and relocate these edges to a congestifree region. The advantages
of using moves instead of a routing heuristic is that dynamicedge shifting is much more
runtime e cient. The complexity of each edge move is constan, yet e ective to resolve the

majority of congestion without introducing scenic detours.

109

Figure 7.3 highlights ve basic moves that can be generatedri a net topology. The
green squares represent nail nodes, and blue circles repees anchors. From Figure 7.3(A)
to 7.3(E), we demonstrate Parallel Detour, Z-bend Detour, L-shape Move H-shape Move
and Z-shape Movetransformations.

Parallel detour and Z-bend detour both use pattern routing [37,80] techniques to gen-
erate a new net topology. As explained in Figure 7.3(A), aparallel detour of CD is created
at EF location, then edges AC and BD are removed, replaced wit EA and FB. Parallel de-
tour is the backbone approach to redirect resource consumjmn from long stripy congested
regions to less congested ones. Th#-bend detour shown in Figure 7.3(B), reshapes the
original L-shape bend to a Z-bend detour. This detour allowsus to generate topology with
more zigzag patterns to adapt to the complex routing terrain. Figure 7.3(C) illustrates an
L-shape path shift from one corner of the rectangle to the otler. Figure 7.3(D) shows a
parallel move based on an H-shape topology. Figure 7.3(E) slws another parallel move
based on a di erent topology (Z-shape). Importantly, most of these moves do not introduce

additional wire length while making changes to a connected at topology.

7.5 Results

This section presents the experimental results. DOC framewrk is implemented with
C++ on an Intel Quad-core 3.5 GHz Sandy Bridge processor with8GB of RAM. The
performance of DOC router is shown using the ISPD 2007 and 2@)suite [66,67]. The
router stops once the reported OCC value converges to a stegdevel. Then it records the
run time, the percentage of resolved over ow, and theOCC,,4 coe cient. These results
are listed in Table 7.1.

All benchmarks are nished within approximately one minute, averaging 28 seconds for
the 16 benchmarks. These results show the fast performancéd the DOC framework, which
is a key property of congestion analyzer. Within the short time window, the router also
manages to resolve the majority of over ow, range from 91% t®9.5% of the total over ow
have reduced across all benchmarks, e ectively revealing t congestion hot-spot.

The OCC,yg coe cient is reported to show the overall correlation of the remaining

110

(A) (B)

(C) (D)

(E)

Fig. 7.3: Dierent types of moves to be generated on the net toplogy.

congestion. The average coe cient is calculated asOCCqyg = % P OCC, where Ng is

the number of over ow edges. The value ofOCC,yq is a general guideline of the routing
di culty of the benchmark. For example, the easiest benchmark newblue2 have reported
the lowest correlation percentage. However, since the coecient does not reveal the absolute
value of congestion, it is not a standard for comparison of rating di culty among di erent

routing problems.

Table 7.1: ISPD benchmark results.

Runtime Resolved Overow OCCyyq

adaptecl
adaptec2
adaptec3
adaptec4d
adaptecb
newbluel
newblue2
newblue3
bigbluel

bigblue2

bigblue3

bigblue4

newblue4d
newblue5
newblue6

newblue7

15.9 sec
9.6 sec
34.5 sec
10.3 sec
40.9 sec
9.1 sec

8.5 sec

25.4 sec
25.6 sec
30.5 sec
9.8 sec

37.3 sec
28.4 sec
45.3 sec
61.8 sec
52.9 sec

96.46%
97.92%
98.06%
99.51%
97.77%
92.51%
97.38%
96.46%
94.03%
91.46%
98.89%
95.81%
96.79%
97.66%
94.08%
98.08%

6.32%
10.06%
3.90%
4.87%
8.65%
6.81%
0.06%
4.49%
10.00%
4.62%
4.79%
6.11%
7.79%
9.10%
8.98%
2.91%

111

The major purpose of DOC is to identify congested regions. Fjure 7.4 shows the OCC

heat map of the hard-to-route newblue7 benchmarks from ISPD2008. The DOC analysis

pin-pointed the regions that are causing the congestion. Thse congestion information can

feedback to the global placer for cell allocation adjustmetny which is beyond the scope of

this dissertation.

7.6 Conclusion

This work presents DOC, a fast and accurate congestion anagis framework that ef-

fectively identi es the hard-to-route portion of the global routing problem. The proposed

112

Fig. 7.4: OCC heat map of newblue7 Benchmark before and afteDbOC analysis.

approach uses novel OCC coe cient to capture the hotspots ofglobal routing problem. An
e cient dynamic pattern based router is included in the DOC f ramework to facilitate ac-
curate calculation of the OCC heat map. The experimental reslts show that the proposed
approach can accurately abstract regions with high usage desity within one minute of run

time through all tested benchmarks. The proposed frameworlcan be further integrated to

a global placement framework and improve the congestion awaness of the design.

113

Chapter 8

Conclusion and Future Work

8.1 Conclusion

This work has covered methodologies to parallelize EDA apjptations including oor-
planner and global router, and implemented these parallel lyorithms on GPU architecture.
Experimental results have shown that several inherently squential algorithms can bene t
from massively parallel architecture through an algorithmic overhaul.

The parallel simulated annealing oorplanner breaks the lang chain of data dependen-
cies to uncover concurrency. This work presents a novel sdiion space and design space
exploration to strike for a balance between performance andsolution quality. The GPU
oorplanner renders a signi cant 6-188X speedup compared ¢ the sequential algorithm for
a range of MCNC and GSRC benchmarks, while delivering compaable or better solution
quality.

Two GPU based global routing have been proposed. The rst oneuses a GPU-CPU
hybrid framework to maximize the computational throughput . A novel net level concurrency
model is presented to allow scalable and deterministic patdéel routing. An average of
4X speedup over NTHU-Route 2.0 is reported in the experimerg using this approach.
The second GPU global router identi es several limitations in the previous work: (1) a
lack of exploitable concurrency of the net level concurreng model, and (2) GPU-CPU
communication overhead of the hybrid framework. To tackle these issues, a new GPU
routing engine is developed based on a GPU A*search impleméation. A novel ne grain
concurrency model is used to extra parallel workload, and ishown superior to the net level
concurrency model in terms of scalability.

Lastly, a congestion analysis framework called dynamic ottogonal congestion analysis

114

is proposed. It targets to quickly identify hard-to-route regions on a routing map. The
di culty is evaluated using a novel orthogonal congestion correlation factor. Coupled with
a fast routing engine using only dynamic edge shifting movethis congestion analysis is

shown with the ability to pinpoint hard-to-route areas with tremendous speed.

8.2 Future Work

This research has a substantial impact on the future EDA deggn ow. As suggested
in previous chapters, the fast global router based on GPU aritecture can be modi ed for
a high performance congestion analysis tool. In an comparis with existing probability or
rectilinear Steiner minimal tree (RSMT) based congestion aalysis tools, the global router
based design can signi cantly improve the congestion prediion accuracy, which is a key
factor in the current and future EDA design ow. Historicall y, the global router has not
been considered as the mainstream technique for congesti@nalysis due to its extensive
run time. But with the parallel models presented in this work, global router engine can
scale much better on modern commodity multi-core as well as BU systems, allowing a
signi cant reduction of run time.

Future EDA design ow can directly benet from the aforement ioned advantage by
incorporating the proposed multi-threaded routing engine with upstream physical design
tools such as oorplanning and placement. The parallel routng engine can produce accurate
congestion information to design tools in an iterative and nterleaved fashion, allowing IC
designers to avoid potential design aws in the early stages As a whole, the EDA design
ow can enjoy a faster design convergence as well as shortesthéurn-around time.

As nal remarks, although a successful implementation of the parallel global router
is presented, it can still be further improved to extend the abilities in designs of various

speci cations. For this purpose, a few suggestions are disissed in the following sections.

8.2.1 Parameter Tuning of Global Router
Tuning plays an important role in designing a sophisticated and error-resilient global

routing. A well-tuned router not only delivers good solution quality in the selected bench-

115

marks, but also needs to excel in a variety of workloads. Thearious parameters throughout
di erent stages of global routing can be tuned to give the router di erent characteristics.
When considering a wide range of routing workloads, it is ineresting to see whether the
global router can adapt to the workload, which self-con gures with the characteristic that
is best matched for the problem.

In addition, although several tuning methods for sequentid routers have been proposed
in the past decade and steadily improved the performance oflgbal router. The parallel
router proposed in this work (Chapters 5 and 6) exhibits di erent characteristics from the
sequential router in many subtle ways. For example, creatig and expanding bounding
boxes, and the use of congested regions for work queue gertava, both call for very dif-
ferent tuning measures that tradeo between performance ad solution quality. In-depth
understanding of these tradeo s can help optimizing the pardlel router to achieve superior

solution quality, as well as runtime e ciency.

8.2.2 Tackling Limitations of Bounding Box

Both the NLC and FGC parallel models in Chapters 5 and 6 rely onthe use of bounding
box for all routing tasks. Although showcasing excellent alility to ensure a stable and de-
terministic parallelization in the tested benchmarks, routing with bounding box has several

limitations for the real world applications.

Tackling routing obstacles. The bounding box method assumgthat routing resources
are distributed uniformly on a routing grid. But it is not tru e in a routing problem
where obstacles exist. Since no interconnect is allowed toute through these obsta-
cles, they reduce the available routing resources within tkir regions. This constraint
leads to an irregular routing resource distribution. Due tothis reason, applying bound-
ing box to restrict routing resources can degrade solution gality for some nets. The
resources within the bounding box can be insu cient to full | a connectivity that

would otherwise be more optimal if the bounding box restricion was not applied, or

if the bounding box's shape had taken the obstacles into conderation.

116

Bounding box expansion strategy. The current bounding box § expanded when a net
is found unable to route with an expected wirelength. By giving the net larger area to
negotiate a route, it is often able to nd a more optimal solution. To some degree, this
approach mitigates the aforementioned issue of routing oliacles. But increasing sizes
of bounding boxes reduce the exploitable concurrency of thentire routing problem.

Typically, the larger each net becomes, the higher likelihod that it can overlap with

another net, which leads to a data dependency that must be sekd in a sequential

order.

Potentially, the above issues can be resolved with the follwing proposals: (1) A di-
rectional bounding box expansion/reduction strategy that takes the routing resource distri-
bution and net topology into account; (2) Relax the data dependency caused by bounding
box overlapping to a degree that does not hamper the stable ahdeterministic properties

of parallelization, but allows more parallel workloads.

117

References

[1] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. E. Lefohn, and
T. J. Purcell, \A survey of general-purpose computation on gaphics hardware," in
Eurographics, State of the Art Reports pp. 21{51, Aug. 2005.

[2] J. Shi, Y. Cai, W. Hou, L. Ma, S. X. Tan, P.-H. Ho, and X. Wang, \GPU friendly
fast poisson solver for structured power grid network analgis," in Proceedings of 46th
IEEE/ACM Design Automation Conference (DAC) , pp. 178{183, 2009.

[38] K. Gulati and S. Khatri, \Towards acceleration of fault s imulation using graphics
processing units,” in Proceedings of 45th IEEE/ACM Design Automation Conference
(DAC), pp. 822{827, 2008.

[4] Z. Feng and P. Li, \Multigrid on GPU: tackling power grid a nalysis on parallel SIMT
platforms," in IEEE International Conference on Computer-Aided Design (ICCAD),

pp. 647{654, 2008.

[5] D. Chatterjee, A. DeOrio, and V. Bertacco, \Event-drive n gate-level simulation with
GP-GPUs," in Proceedings of 46th IEEE/ACM Design Automation Conference (DAC),
pp. 557{562, 2009.

[6] Y. Liuand J. Hu, \GPU-based parallelization for fast cir cuit optimization," in Proceed-
ings of 46th IEEE/ACM Design Automation Conference (DAC), pp. 943{946, 2009.

[7] J. Cong and Y. Zou, \Parallel multi-level analytical glo bal placement on graphics pro-
cessing units," iINnIEEE International Conference on Computer-Aided Design (ICCAD),
pp. 681{688, 2009.

[8] Y. Deng, B. D. Wang, and S. Mu, \Taming irregular EDA appli cations on GPUSs,"
in IEEE International Conference on Computer-Aided Design (ICCAD), pp. 539{546,
20009.

[9] Y. Han, K. Chakraborty, S. Roy, and V. Kuntamukkala, \A GP U algorithm for IC
oorplanning: Speci cation, analysis and optimization,” in IEEE International Con-
ference on VLSI Design pp. 159{164, 2011.

[10] Y. Han, S. Roy, and K. Chakraborty, \Optimizing simulat ed annealing on GPU: A case
study with ic oorplanning,” in IEEE International Symposium on Quality Electronic
Design (ISQED), pp. 1{7, 2011.

[11] Y. Han, K. Chakraborty, S. Roy, and V. Kuntamukkala, \De sign and implementation of
a throughput-optimized GPU oorplanning algorithm,” ACM Transactions on Design
Automation of Electronic Systems vol. 16, no. 3, pp. 23:1{23:21, June 2011.

[12] Y. Han, D. M. Ancajas, K. Chakraborty, and S. Roy, \Explo ring high throughput com-
puting paradigm for global routing,” in IEEE International Conference on Computer-
Aided Design (ICCAD), pp. 298{305, 2011.

118

[13] Y. Han, K. Chakraborty, and S. Roy, \A global router on GP U architecture," in IEEE
International Conference on Computer Design (ICCD), pp. 1{6, 2013.

[14] W.-H. Liu, W.-C. Kao, Y.-L. Li, and K.-Y. Chao, \Multi-t hreaded collision-aware
global routing with bounded-length maze routing," in Proceedings of 47th IEEE/ACM
Design Automation Conference (DAC), pp. 200{205, Anaheim, California, June 2010.

[15] Y. Frishman and A. Tal, \Multi-level graph layout on the GPU," IEEE Transactions
on Visualization and Computer Graphics (TVCG), vol. 13, no. 6, pp. 1310{1319, 2007.

[16] ||, \Online dynamic graph drawing," IEEE Transactions on Visualization and Com-
puter Graphics (TVCG), vol. 14, no. 4, pp. 727{740, 2008.

[17] S. N. Adya and I. Markov, \Fixed-outline oorplanning t hrough better local search,"
in IEEE International Conference on Computer Design (ICCD), pp. 328{334, 2001.

[18] ||, \Fixed-outline oorplanning: enabling hierarchi cal design," IEEE Transactions
on VLSI Systems (TVLSI), vol. 11, no. 6, pp. 1120{1135, 2003.

[19] T.-C. Chen and Y.-W. Chang, \Modern oorplanning based on B*-tree and fast simu-
lated annealing,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 25, no. 4, pp. 637{650, 2006.

[20] C. Zeng and Y. Chen, \Optimal random search, fractional dynamics and fractional
calculus," eprint arXiv:1310.7687, Oct. 2013.

[21] J. Cong, J. Wei, and Y. Zhang, \A thermal-driven oorpla nning algorithm for 3D ICs,"
in IEEE International Conference on Computer-Aided Design (ICCAD), pp. 306{313,
2004.

[22] T.-C. Chen, Y.-W. Chang, and S.-C. Lin, \IMF: interconn ect-driven multilevel oor-
planning for large-scale building-module designs," inlEEE International Conference
on Computer-Aided Design (ICCAD), pp. 159{164, 2005.

[23] S. A. Kravitz and R. A. Rutenbar, \Multiprocessor-based placement by simulated
annealing,” in Proceedings of the 23rd ACM/IEEE Design Automation Conference
pp. 567{573, 1986.

[24] J. S. Rose, W. M. Snelgrove, and Z. G. Vranesic, \Parallestandard cell placement
algorithms with quality equivalent to simulated annealing,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD) vol. 7, no. 3, pp.
387{396, 1988.

[25] D. J. Ram, T. H. Sreenivas, and K. G. Subramaniam, \Paralel simulated annealing
algorithms," Journal of Parallel and Distributed Computing, vol. 37, no. 2, pp. 207{212,
1996.

[26] T. Lengauer, \Global routing and area routing," in Combinatorial Algorithms for In-
tegrated Circuit Layout, pp. 379{454. New York: John Wiley & Sons, Inc., 1992.

119

[27] E. F. Moore, \The shortest path through a maze," in Proceedings of the International
Symposium on the Theory of Switching, and Annals of the Computean Laboratory of
Harvard University, pp. 285{292. Cambridge, MA: Harvard University Press, 199.

[28] C. Y. Lee, \An algorithm for path connections and its applications,” IRE Transactions
on Electronic Computers, vol. EC-10, no. 3, pp. 346{365, 1961.

[29] F. O. Hadlock, \A shortest path algorithm for grid graph s," Networks, vol. 7, no. 4,
pp. 323{334, 1977.

[30] E. W. Dijkstra, \A note on two problems in connexion with graphs." Numerische
Mathematik, vol. 1, pp. 269{271, 1959.

[31] P. Hart, N. Nilsson, and B. Raphael, \A formal basis for the heuristic determination of
minimum cost paths," IEEE Transactions on Systems Science and Cyberneti¢siol. 4,
no. 2, pp. 100{107, 1968.

[32] J. A. Roy and I. L. Markov, \High-performance routing at the nanometer scale,"IEEE
Transactions on Computer-Aided Design of Integrated Circuitsand Systems (TCAD),
vol. 27, no. 6, pp. 1066{1077, June 2008.

[33] J.-R. Gao, P.-C. Wu, and T.-C. Wang, \A new global router for modern designs," in
Proceedings of Asia-Paci ¢ Design Automation Conference (ASP-DAC), pp. 232{237,
2008.

[34] Y.-J. Chang, Y.-T. Lee, J.-R. Gao, P.-C. Wu, and T.-C. Wang, \NTHU-Route 2.0:
a robust global router for modern designs," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 29, no. 12, pp. 1931{1944,
Dec. 2010.

[35] M. Cho, K. Lu, K. Yuan, and D. Z. Pan, \Boxrouter 2.0: Arch itecture and imple-
mentation of a hybrid and robust global router," in IEEE International Conference on
Computer-Aided Design (ICCAD), pp. 503{508, 2007.

[36] L. McMurchie and C. Ebeling, \PathFinder: a negotiatio n-based performance-driven
router for FPGAs," in ACM International Symposium on eld-Programmable Gate
Arrays (FPGA) , pp. 111{117, Feb. 1995.

[37] M. Pan and C. Chu, \FastRoute: a step to integrate global routing into placement,"”
in IEEE International Conference on Computer-Aided Design (ICCAD), pp. 464{471,
2006.

[38] ||, \FastRoute 2.0: a high-quality and e cient global r outer," in Proceedings of
Asia-Paci ¢ Design Automation Conference (ASP-DAC) , pp. 250{255, 2007.

[39] Y. Zhang, Y. Xu, and C. Chu, \FastRoute 3.0: a fast and high quality global router
based on virtual capacity,” in IEEE International Conference on Computer-Aided De-
sign (ICCAD), pp. 344{349, 20009.

120

[40] Y. Xu, Y. Zhang, and C. Chu, \FastRoute 4.0: global router with e cient via mini-
mization," in Proceedings of Asia-Paci c Design Automation Conference (ASP-DAC),
pp. 576{581, 2009.

[41] K.-R. Dai, W.-H. Liu, and Y.-L. Li, \E cient simulated e volution based rerouting and
congestion-relaxed layer assignment on 3-D global routing in Proceedings of Asia-
Paci ¢ Design Automation Conference (ASP-DAC), pp. 582{587, 2009.

[42] H.-Y. Chen, C.-H. Hsu, and Y.-W. Chang, \High-performance global routing with
fast over ow reduction,” in Proceedings of Asia-Paci ¢ Design Automation Conference
(ASP-DAC), pp. 570{575, 2009.

[43] T.-H. Wu, A. Davoodi, and J. T. Linderoth, \GRIP: scalab le 3D global routing using
integer programming,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 30, no. 1, pp. 72{84, Jan. 2011.

[44] M. Cho and D. Pan, \Boxrouter: a new global router based m box expansion and
progressive ilp," in Proceedings of 43rd IEEE/ACM Design Automation Conference
(DAC), pp. 373{378, 2006.

[45] H. Shojaei, A. Davoodi, and J. Linderoth, \Congestion analysis for global routing via
integer programming,” in IEEE International Conference on Computer-Aided Design
(ICCAD) , pp. 256{262, 2011.

[46] A. B. Kahng and X. Xu, \Accurate pseudo-constructive wirelength and congestion
estimation,” in Proceedings of the 2003 International Workshop on System LeV In-
terconnect Prediction (SLIP), pp. 61{68, 2003.

[47] J. Lou, S. Thakur, S. Krishnamoorthy, and H. S. Sheng, \Estimating routing conges-
tion using probabilistic analysis." IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 21, no. 1, pp. 32{41, 2002.

[48] J. Westra, C. Bartels, and P. Groeneveld, \Probabilistic congestion prediction.” in
International Symposium on Physical Design (ISPD), pp. 204{209, 2004.

[49] J. Westra and P. Groeneveld, \Is probabilistic congesion estimation worthwhile?" in
Proceedings of the 2005 International Workshop on System LeV Interconnect Predic-
tion (SLIP) , pp. 99{106, 2005.

[50] M.-C. Kim, J. Hu, D.-J. Lee, and I. L. Markov, \A simplr me thod for routability-driven
placement," in IEEE International Conference on Computer-Aided Design (ICCAD),
pp. 67{73, 2011.

[51] M.-K. Hsu, S. Chou, T.-H. Lin, and Y.-W. Chang, \Routabi lity-driven analytical place-
ment for mixed-size circuit designs," in IEEE International Conference on Computer-
Aided Design (ICCAD), pp. 80{84, 2011.

[52] X. He, T. Huang, L. Xiao, H. Tian, G. Cui, and E. F. Young, \ Ripple: An e ective
routability-driven placer by iterative cell movement,” in IEEE International Conference
on Computer-Aided Design (ICCAD), pp. 74{79, 2011.

121

[53] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and. Phillips, \GPU comput-
ing," Proceedings of the IEEE vol. 96, no. 5, pp. 879{899, 2008.

[54] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, \B*-tr ees: a new representa-
tion for non-slicing oorplans,” in Proceedings of 37th IEEE/ACM Design Automation
Conference (DAC), pp. 458{463, 2000.

[55] P.-N. Guo, C.-K. Cheng, and T. Yoshimura, \An O-tree representation of non-slicing
oorplan and its applications,"” in Proceedings of 36th IEEE/ACM Design Automation
Conference (DAC), pp. 268{273, 1999.

[56] D. Cross, E. Nequist, and L. Sche er, \A DFM aware, space lased router," in Inter-
national Symposium on Physical Design (ISPD) pp. 171{172, 2007.

[57] N. Kaul, \Design planning trends and challenges," in International Symposium on
Physical Design (ISPD), p. 5, 2010.

[58] C. J. Alpert, Z. Li, M. D. Mo tt, G.-J. Nam, J. A. Roy, and G . Tellez, \What makes
a design di cult to route,” in International Symposium on Physical Design (ISPD),
pp. 7{12, 2010.

[59] R. C. Johnson. (2010, Mar.) EE Times: IBM warns of “desig rule explosion'
beyond 22-nm. [Online]. Available: http://www.eetimes.com/electronics-news/
4088244/IBM-warns-of-design-rule-explosion-beyond-2-nm

[60] P. Groeneveld, \Going with the ow: bridging the gap between theory and practice in
physical design,” in International Symposium on Physical Design (ISPD), p. 3, 2010.

[61] M. D. Mo tt, J. A. Roy, and I. L. Markov, \The coming of age of (academic) global
routing,” in International Symposium on Physical Design (ISPD), pp. 148{155, 2008.

[62] J. Croix and S. Khatri, \Introduction to GPU programmin g for EDA," in IEEE Inter-
national Conference on Computer-Aided Design (ICCAD), pp. 276{280, Nov. 2009.

[63] K. Gulati and S. Khatri, \Towards acceleration of fault simulation using graphics
processing units,” in Proceedings of 45th IEEE/ACM Design Automation Conference
(DAC), pp. 822{827, June 2008.

[64] K. Gulati and S. P. Khatri, \Accelerating statistical s tatic timing analysis using graph-
ics processing units," in Proceedings of Asia-Pacic Design Automation Conference
(ASP-DAC) , pp. 260{265, 2009.

[65] T.-H. Wu, A. Davoodi, and J. T. Linderoth, \A parallel in teger programming approach
to global routing," in Proceedings of 47th IEEE/ACM Design Automation Conference
(DAC), pp. 194{199, 2010.

[66] \ISPD 2007 global routing contest and benchmark suite: [Online]. Available:
http://www.sigda.org/ispd2007/rcontest/

[67] G.-J. Nam, C. Sze, and M. Yildiz, \The ISPD global routing benchmark suite,” in
International Symposium on Physical Design (ISPD), pp. 156{159, 2008.

122

[68] Z. Cao, T. Jing, J. Xiong, Y. Hu, L. He, and X. Hong, \DpRouter: a fast and accu-
rate dynamic-pattern-based global routing algorithm," in Proceedings of Asia-Pacic
Design Automation Conference (ASP-DAC), pp. 256{261, 2007.

[69] M. M. Ozdal and M. D. F. Wong, \Archer: a history-driven g lobal routing algorithm,"
in IEEE International Conference on Computer-Aided Design (ICCAD), pp. 488{495,
San Jose, California, Nov. 2007.

[70] M. D. Mo tt, \MaizeRouter: Engineering an e ective glob al router,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systms (TCAD), vol. 27,
no. 11, pp. 2017{2026, Nov. 2008.

[71] T.-H. Wu, A. Davoodi, and J. T. Linderoth, \A parallel in teger programming approach
to global routing," in Proceedings of 47th IEEE/ACM Design Automation Conference
(DAC), pp. 194{199, 2010.

[72] C. Chu and Y.-C. Wong, \FLUTE: fast lookup table based rectilinear Steiner minimal
tree algorithm for VLSI design,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 27, no. 1, pp. 70{83, Jan. 2008.

[73] J. Hu and S. S. Sapatnekar, \A survey on multi-net global routing for integrated
circuits," Integration, the VLSI Journal, vol. 31, pp. 1{49, 2001.

[74] S. Khanna, S. Gao, and K. Thulasiraman, \Parallel hierachical global routing for
general cell layout,” in Proceedings of 5th ACM Great Lakes Symposium on VLSI
(GLSVLSI), pp. 212{215, 1995.

[75] I.-L. Yen, R. Dubash, and F. Bastani, \Strategies for mgoping Lee's maze routing al-
gorithm onto parallel architectures," in Proceedings of 7th International Parallel Pro-
cessing Symposium (IPPS) pp. 672{679, Apr. 1993.

[76] P. Harish and P. Narayanan, \Accelerating large graph #gorithms on the GPU using
CUDA," in International Conference on High Performance Computing (HIPC), pp.
197{208, 2007.

[77] L. Luo, M. Wong, and W.-M. Hwu, \An e ective GPU implement ation of breadth- rst
search," in Proceedings of 47th IEEE/ACM Design Automation Conference (DAC), pp.
52{55, Anaheim, California, June 2010.

[78] A. Bleiweiss, \GPU accelerated path nding,” in Proceedings of 23rd ACM SIG-
GRAPH/Eurographics Symposium on Graphics Hardware (GH), pp. 65{74, 2008.

[79] J. Hu, J. A. Roy, and I. L. Markov, \Completing high-qual ity global routes," in Inter-
national Symposium on Physical Design (ISPD) pp. 35{41, 2010.

[80] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, \Patten routing: use and theory
for increasing predictability and avoiding coupling,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD) vol. 21, pp. 777{790, 2001.

123

Vita
Yiding Han

Published Journal Articles

Exploring High Throughput Computing Paradigm for Global Ro uting, Yiding Han,
Dean Michael Ancajas, Koushik Chakraborty, and Sanghamita Roy, IEEE Transac-

tions on Very Large Scale Integration SystemsAccepted

Analysis of Intermittent Timing Fault Vulnerability, Saur abh Kothawade, Koushik
Chakraborty, Sanghamitra Roy, Yiding Han, Microelectronics Reliability, Volume 52,
Issue 7, July 2012, Pages 1515{1522

Design and Implementation of a Throughput Optimized GPU Floorplanning Algo-
rithm, Yiding Han, Koushik Chakraborty, Sanghamitra Roy an d Vilasita Kunta-
mukkala, ACM Transactions on Design Automation of Electronic Systems Volume

16, Issue 3, No. 23, June 2011, Pages 23:1{23:21

Random Delay E ect Minimization on a Hardware-in-the-loop N etworked Control
System Using Optimal Fractional Order Pl Controllers, V. Bh ambhami, Y. Han, S.
Mukhopadhyay, Y. Luo, and Y. Q. Chen, Communications in Nonlinear Science and

Numerical Simulation-Special Issue 15(9), Sep. 2010, Pages 2486{2496

Published Conference Papers

A Global Router on GPU Architecture, Yiding Han, Koushik Cha kraborty, and Sang-

hamitra Roy, IEEE International Conference on Computer Design 2013, Pages 74{80

GPU Based Computer Aided Design Algorithms for EDA, Yiding Han, Ph.D. Forum

Poster SessionDesign Automation Conference 2013

124

DOC: Fast and accurate congestion analysis for global routig, Sanghamitra Roy,
Yiding Han, Koushik Chakraborty, IEEE 30th International Conference on Computer
Design, 2012, pages 508{509

Exploring High Throughput Computing Paradigm for Global Ro uting, Yiding Han,
Dean Michael Ancajas, Koushik Chakraborty, Sanghamitra Ry, Proceedings of IEEE/ACM
International Conference on Computer-Aided Design November 2011, San Jose, Pages

298{305

Optimizing Simulated Annealing on GPU: A Case Study with IC Floorplanning, Yid-
ing Han, Sanghamitra Roy and Koushik Chakraborty, 12th IEEE International Sym-
posium on Quality Electronic Design (ISQED), March 2011, Pages 1{7

A GPU Algorithm for IC Floorplanning: Speci cation, Analys is and Optimization,
Yiding Han, Koushik Chakraborty, Sanghamitra Roy and Vilasita Kuntamukkala,
24th IEEE/ACM International VLSI Design Conference , 2011, Pages 159{164

Fractional Order Networked Control Systems and Random Delg Dynamics: A Hardware-
In-The-Loop Simulation Study, Shayok Mukhopadhyay, Yiding Han and YangQuan
Chen, American Control Conference, 2009, Pages 1418{1423

Random delay e ect minimization on a hardware-in-the-loop networked control sys-
tem using optimal fractional order PI controllers, V. Bhamb hani, Y. Han, S.Mukhopad-
hyay, Y. Luo., and Y. Q.Chen, Third IFAC Workshop on Fractional Di erentiation
and its Applications (FDA) , Pages 1418{1423

Mapping River Changes Using Low Cost Autonomous Unmanned Asal Vehicles,
Yiding Han, Huifang Dou, Yangquan Chen, research poster inAWRA 2009 Spring
Specialty Conference - Managing Water Resources Developmem a Changing Cli-

mate, May 4-6, 2009 in Anchorage, Alaska

Programmable Multispectral Imager Development as Light Weaght Payload for Low

Cost Fixed Wing Unmanned Aerial Vehicles, Yiding Han, Austin Jensen, Huifang

125

Dou, ASME 2009 International Design Engineering Technical Confeences (IDETC),

Aug. 2009, San Diego

Aggieair: An Integrated and E ective Small Multi-UAV Comman d, Control and Data
Collection Architecture, Calvin Coopmans, Yiding Han, ASME 2009 International

Design Engineering Technical Conferences (IDETC) Aug 2009, San Diego

Using Aerial Images to Calibrate The Inertial Sensors of a Lav-cost Multispectral Au-
tonomous Remote Sensing Platform (AggieAir), Austin Jensa, Yiding Han, YangQuan

Chen, IGARSS 2009 Pages 555{558

Master Thesis

An Autonomous Unmanned Aerial Vehicle-Based Imagery Systen development and

Remote Sensing Images Cassi cation for Agricultural Applications, Yiding Han, Utah

State University 2009.

