Course Description:
Introduces design principles and techniques for fully-integrated CMOS analog circuits. Topics include advanced MOSFET device modeling, design and verification of operational amplifiers, and switched-capacitor circuits.

Prerequisites:
ECE 5420

Textbook:

Course Outcomes:

Topics Covered:
- Models for Analog Design
 - Traditional long-channel models, superthreshold and subthreshold
 - Short-channel models
 - gm/ld models for semi-empirical design
 - Use of Cadence and SPICE for simulation and optimization
 - High-frequency models including device capacitances
- Current Mirrors
 - Traditional mirror circuits
 - Wide-swing cascade mirrors
 - Reference current generators
 - Regulated-drain configurations
- CMOS Amplifiers
 - Common-source, common-gate and source-follow configurations
 - High-frequency response
 - Differential amplifiers
 - Cascode and cross-code configurations
- CMOS Operational Amplifiers
- Noise in CMOS Electronics
- Dynamic Analog Circuits
- Advanced Topics
 - Advanced op amp design topics
 - Mismatched compensation via auto-zeroing and chopper stabilization
 - Analog-to-digital conversion circuits
 - Digital-to-analog conversion circuits
 - Phase-locked-loops
C Delta-sigma sensing
C Time-to-digital converters
C Nonlinear and neuromorphic analog circuits

Outcome Assessments (Grades):
B-level project 15 points
A-level project 30 points
Conference Submission 15 points

<table>
<thead>
<tr>
<th>Grade</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>>54</td>
</tr>
<tr>
<td>A-</td>
<td>>51</td>
</tr>
<tr>
<td>B+</td>
<td>>48</td>
</tr>
<tr>
<td>B</td>
<td>>45</td>
</tr>
<tr>
<td>B-</td>
<td>>40</td>
</tr>
<tr>
<td>C+</td>
<td>>35</td>
</tr>
<tr>
<td>C</td>
<td>>30</td>
</tr>
<tr>
<td>C-</td>
<td>>25</td>
</tr>
</tbody>
</table>

Class Schedule:
Class Three times a week for fifty minutes.

Contribution of course to meeting the requirements of Criterion 5:
3 credit hours of Engineering Topics and contains significant engineering design content

Relationship of course to student outcomes:

Instructor:
Chris Winstead, Associate Professor
January 2013