Safety Aware Platooning of Automated Electric Transport Vehicles

Master of Science Thesis Defense

Spencer Scott Jackson

Utah State University

Spen.Ja@aggiemail.usu.edu

August 14, 2012
Table of Contents

1 Introduction

2 The Emergency Brake Scenario
 - Two Vehicle Model
 - The Unsafe Headway Zone
 - Monte Carlo Analysis of the Unsafe Headway Zone

3 Physical Vehicle Modeling for the Emergency Brake Scenario
 - Braking Variation

4 Emergency Braking of a Full Platoon
 - Additional Models for Vehicle Interactions
 - Controllers
 - Controller Performance

5 Conclusions
Table of Contents

1 Introduction

2 The Emergency Brake Scenario
 - Two Vehicle Model
 - The Unsafe Headway Zone
 - Monte Carlo Analysis of the Unsafe Headway Zone

3 Physical Vehicle Modeling for the Emergency Brake Scenario
 - Braking Variation

4 Emergency Braking of a Full Platoon
 - Additional Models for Vehicle Interactions
 - Controllers
 - Controller Performance

5 Conclusions
Highway Automation

- Computers drive for you
- Economic benefits - fewer wrecks, fewer delays, fewer lanes
- Many groups are researching
- Platoons - linear groups of consecutive vehicles acting in unison and traveling in close-following formation

Two platoons. L indicates lead vehicle of the platoon, F a follower.
Automated Electric Transport (AET)

- Electric vehicles - nicer plants than combustion vehicles
- Small batteries through wireless power transfer
- Safety is key factor in design
Table of Contents

1 Introduction

2 The Emergency Brake Scenario
 - Two Vehicle Model
 - The Unsafe Headway Zone
 - Monte Carlo Analysis of the Unsafe Headway Zone

3 Physical Vehicle Modeling for the Emergency Brake Scenario
 - Braking Variation

4 Emergency Braking of a Full Platoon
 - Additional Models for Vehicle Interactions
 - Controllers
 - Controller Performance

5 Conclusions
Definition and Significance of Emergency Brake Scenario

Emergency Brake Scenario
Situation requiring a platoon to stop as quickly as possible

- Considered conservative design point
- Used to determine safe maneuvers and headways
Model Abstraction of a Platoon

```
\begin{align*}
\text{Leader} & : a_{\text{min}l}, \tau_l, d_l, v_{0l}, \text{brake signal} \\
\text{Delay} & : T \\
\text{Follower} & : a_{\text{min}f}, \tau_f, d_f, v_{0f}, v_f, x_f, H(t), \Delta v(t)
\end{align*}
```

Block diagram of first order model
Difference in Velocity Curves
As a Function of Initial Headway

$H - \Delta v$ curves for different a_{minf}
Threshold of Safety for Difference in Velocity

- Δv proportional to risk of injury
- Δv_{safe} small enough no risk
- Region in $H-\Delta v$ curve is therefore unsafe headway zone (UHZ)
Unsafe Headway Zone Sensitivity

Unsafe headway zones for varying parameters with:

\[a_{\text{min}} = -9.5 \text{m/s}^2 \]
Probability of Unsafe Collision

Monte Carlo analysis results

- Minimum acceleration assigned 2 distributions: "strict" & "loose"
- Delay assigned 2 values: "short" & "long"
Table of Contents

1. Introduction
2. The Emergency Brake Scenario
 - Two Vehicle Model
 - The Unsafe Headway Zone
 - Monte Carlo Analysis of the Unsafe Headway Zone
3. Physical Vehicle Modeling for the Emergency Brake Scenario
 - Braking Variation
4. Emergency Braking of a Full Platoon
 - Additional Models for Vehicle Interactions
 - Controllers
 - Controller Performance
5. Conclusions
A More Detailed Model

- Greater insight to influence of physical parameters
- Easier to add other vehicle interactions (scalability)

Block diagram of physical vehicle model
Vehicle Subsystem Models

- PID - physical layer control
- DC motor model - first-order actuator
- LuGre model - dynamic tire/road interaction
- Quarter-vehicle model - rotational, longitudinal dynamics
Minimum Acceleration Sensitivity

- Tire condition (θ), battery charge (V_{max}), vehicle mass (m), aerodynamic drag, and tire radius varied
- Vehicle minimum acceleration (a_{min}) made equal to strict and loose distributions
- Mass considered most likely cause of variance in a_{min}

Values used to achieve a_{min}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>-10</th>
<th>-9.5</th>
<th>-9</th>
<th>-7.75</th>
<th>-5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>-</td>
<td>-</td>
<td>1.90</td>
<td>2.65</td>
<td>11.52</td>
<td>-</td>
</tr>
<tr>
<td>V_{max}</td>
<td>V</td>
<td>263.5</td>
<td>248.7</td>
<td>233.9</td>
<td>196.9</td>
<td>130.8</td>
</tr>
<tr>
<td>m</td>
<td>kg</td>
<td>1619</td>
<td>1710</td>
<td>1810</td>
<td>2119</td>
<td>3028</td>
</tr>
</tbody>
</table>
Table of Contents

1 Introduction

2 The Emergency Brake Scenario
 ■ Two Vehicle Model
 ■ The Unsafe Headway Zone
 ■ Monte Carlo Analysis of the Unsafe Headway Zone

3 Physical Vehicle Modeling for the Emergency Brake Scenario
 ■ Braking Variation

4 Emergency Braking of a Full Platoon
 ■ Additional Models for Vehicle Interactions
 ■ Controllers
 ■ Controller Performance

5 Conclusions
Communication, Sensing, and Collisions

- Vehicle interaction models allow modeling an entire platoon
 - Communication - constant delay
 - Sensing - no dynamics
 - Collisions - impulse-momentum based model

- Entire emergency scenarios can be simulated
- More sophisticated models can be added for future work
Regulation Layer Controller

- Sensed and communicated information combined to determine best acceleration behavior
- Rajamani controller used for simplicity and frequency in publications
- Leader and preceding vehicle acceleration and velocity required
- Design parameters provided for weighting leader information, controller bandwidth, and damping

Controller hierarchy

\[a^* \rightarrow \text{Physical Controller} \rightarrow V \rightarrow \text{Motor} \rightarrow T \rightarrow \text{Vehicle Dynamics} \rightarrow a \]
Emergency Controllers

- Rajamani - no change from steady state operation
- Choi - Rajamani with leader information weight zero
- Preceding acceleration - match preceding vehicle
- Preceding acceleration with headway - match preceding vehicle acceleration while maintaining target headway
- Uncoordinated - only sensor data used to maintain target headway
Platoon of 5 vehicles assembled with masses from a normal distribution

Vehicles travel 1 second, emergency brake to complete stop

Masses arranged in random, heaviest-in-rear, and heaviest-as-lead order

Metrics
 - Peak collision force
 - Vehicle acceleration and jerk
 - Platoon total time to stop
 - Δv
Performance with Five Vehicles

Results of heaviest-in-rear platoon in emergency brake scenario using Rajamani controller

Spencer Scott Jackson
Safety Aware Platooning of AET Vehicles
Performance with Five Vehicles

Results of heaviest-in-rear platoon in emergency brake scenario using Rajamani controller

Spencer Scott Jackson Safety Aware Platooning of AET Vehicles
Performance of All Five Controllers with Heaviest in Rear

Δv of impacts in heaviest-in-rear platoon under different control strategies

<table>
<thead>
<tr>
<th>Vehicles</th>
<th>Rajamani</th>
<th>Choi</th>
<th>Prec. Acc.</th>
<th>PAH</th>
<th>Uncoord.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>3.8</td>
<td>-</td>
</tr>
<tr>
<td>3-2</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>0.7</td>
<td>1.3</td>
</tr>
<tr>
<td>4-3</td>
<td>-</td>
<td>0.6</td>
<td>0.6</td>
<td>2.9</td>
<td>-</td>
</tr>
<tr>
<td>5-4</td>
<td>0.9</td>
<td>0.9</td>
<td>0.7</td>
<td>0.9</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Performance of All Five Controllers with Heaviest as Lead

Δv of impacts in heaviest-as-lead platoon under different control strategies

<table>
<thead>
<tr>
<th>Vehicles</th>
<th>Rajamani</th>
<th>Choi</th>
<th>Prec. Acc.</th>
<th>PAH</th>
<th>Uncoord.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3-2</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4-3</td>
<td>-</td>
<td>-</td>
<td>0.6 0.3</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>5-4</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Performance with More Vehicles

\[\Delta v \text{ of collisions in 20 vehicle platoon} \]

<table>
<thead>
<tr>
<th>Vehicles</th>
<th>Rajamani</th>
<th>Choi</th>
<th>Uncoord.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-5</td>
<td>0.8456</td>
<td>0.8566</td>
<td>1.3952</td>
</tr>
<tr>
<td>7-6</td>
<td>-</td>
<td>0.8220</td>
<td>-</td>
</tr>
<tr>
<td>9-8</td>
<td>0.6740</td>
<td>0.6539</td>
<td>1.2032</td>
</tr>
<tr>
<td>18-17</td>
<td>-</td>
<td>0.5927</td>
<td>-</td>
</tr>
<tr>
<td>19-18</td>
<td>-</td>
<td>1.0534</td>
<td>-</td>
</tr>
<tr>
<td>20-19</td>
<td>-</td>
<td>1.0791</td>
<td>-</td>
</tr>
</tbody>
</table>
Table of Contents

1. Introduction
2. The Emergency Brake Scenario
 - Two Vehicle Model
 - The Unsafe Headway Zone
 - Monte Carlo Analysis of the Unsafe Headway Zone
3. Physical Vehicle Modeling for the Emergency Brake Scenario
 - Braking Variation
4. Emergency Braking of a Full Platoon
 - Additional Models for Vehicle Interactions
 - Controllers
 - Controller Performance
5. Conclusions
Conclusions

- Variation in braking ability compromises safety
- Vehicle and system design should consider unsafe headway zone
- More information in control improves performance
- Most massive vehicle as lead improves safety
Acknowledgements

- Committee
- AET Project
- DOE Grant
The End
Appendix Slides
Simplified First Order Model
For Monte Carlo Simulations

Reduced block diagram of model as used in Monte Carlo analysis
Other Groups Researching Highway Automation

- PATH - Gave real platooning demo in 1997 (NAHSC ’98)
- SARTRE - Currently developing road trains with manually driven lorries as leaders (Davila ’10)
- KONVOI - Researching automated platoons of cargo trucks (Wille ’07)
Electric Vehicle vs. Internal Combustion

- Primary time constant of electric motor one tenth to one hundreth that of internal combustion engine (ICE) (Hori ’04)
- ICE rate limits effectively increases delay between vehicles
Highway Safety

- Over 90% of incidents are due to human error (Hitchcock ’92)
- Nearly 34,000 deaths occurred in 2009 due to automobile accidents (NHTSA ’10)
- An AET system must improve upon this to be supported and implemented
- Hal says: removing human error will greatly improve safety
Emergency Brake Scenario as a Design Point

- PATH designed platoon spacing and lane change maneuvers based on emergency brake scenario (i.e. Kanaris '01)
- This is the worst case scenario in platooning as it requires strongest braking and thus generates largest Δv
- More work is required to really assess the probability and causes of emergency brake scenarios
Values used for H-Δv curves

<table>
<thead>
<tr>
<th></th>
<th>v_0 (m/s)</th>
<th>a_{min} (m/s)</th>
<th>T (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leader</td>
<td>30</td>
<td>-10</td>
<td>n/a</td>
</tr>
<tr>
<td>Follower</td>
<td>30</td>
<td>-9.5, -10, -10.5</td>
<td>200</td>
</tr>
</tbody>
</table>
California incident data was found to have a threshold at 3.3 m/s where no injuries were recorded (Hitchcock ’95).

Similar results are in Krafft ’02 and Kullgren ’03.

In this work 2.5 m/s is used as Δv_{safe}.
Values Used for UHZ Sensitivity Analysis

Nominal values and variation for sensitivity analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Nominal</th>
<th>Sweep Range</th>
<th>Sweep Range (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{minf}</td>
<td>m/s²</td>
<td>-10</td>
<td>-10</td>
<td>100</td>
</tr>
<tr>
<td>τ_l</td>
<td>ms</td>
<td>10</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>d_l</td>
<td>ms</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>v_{0l}</td>
<td>m/s</td>
<td>30</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>a_{minf}</td>
<td>m/s²</td>
<td>-10</td>
<td>$(-15, -5)$</td>
<td>$(150, 50)$</td>
</tr>
<tr>
<td>τ_l</td>
<td>ms</td>
<td>10</td>
<td>$(1, 100)$</td>
<td>$(10, 1000)$</td>
</tr>
<tr>
<td>d_l</td>
<td>ms</td>
<td>5</td>
<td>$(0, 100)$</td>
<td>$(0, 2000)$</td>
</tr>
<tr>
<td>v_{0f}</td>
<td>m/s</td>
<td>30</td>
<td>$(25, 35)$</td>
<td>$(83, 117)$</td>
</tr>
<tr>
<td>T</td>
<td>ms</td>
<td>20</td>
<td>$(2, 200)$</td>
<td>$(10, 1000)$</td>
</tr>
</tbody>
</table>
Monte Carlo Analysis Values

Case values for Monte Carlo simulations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>SS</th>
<th>SL</th>
<th>LS</th>
<th>LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>ms</td>
<td>20</td>
<td>200</td>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>μ</td>
<td>m/s2</td>
<td>9.5</td>
<td>9.5</td>
<td>7.75</td>
<td>7.75</td>
</tr>
<tr>
<td>σ</td>
<td>m/s2</td>
<td>0.25</td>
<td>0.25</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Upper Bound</td>
<td>m/s2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Lower Bound</td>
<td>m/s2</td>
<td>9</td>
<td>9</td>
<td>5.5</td>
<td>5.5</td>
</tr>
</tbody>
</table>

PID Control

PID controller equation

\[V_m = k_p e + k_i \int e \, dt + k_d \frac{de}{dt} \quad (1) \]

\[e = a^* - a \quad (2) \]

- Common controller is robust to variation
- Here \(k_d = 0 \) making a slower response
- Actual gains vary drastically with different plants
- Primary time constant is \(\approx 30 \text{ms} \) without overshoot
DC Motor

DC motor model

\[\dot{T} = K_t \frac{V_m - K_e \omega - RL}{L} \]

- Input voltage \(V_m \) limited to represent battery
- Same model used by Walterman '96 for hybrid vehicle
- Values used from solar-powered direct drive vehicle’s motors (Lovat '97)
LuGre Model

\[g(v_r) = \mu_c + (\mu_{st} - \mu_c) e^{-\sqrt{\frac{v_r}{v_s}}} \] \hspace{1cm} (4)

\[\dot{z} = v_r - \theta \frac{\sigma_0 |v_r|}{g(v_r)} z \] \hspace{1cm} (5)

\[\mu = \sigma_0 \dot{z} + \sigma_1 z + \sigma_2 v_r \] \hspace{1cm} (6)

- Dynamic model adds 1 state for integration but represents many phenomena of friction
- Values used from Buick LeSabres used by PATH (Yi ’02)
Quarter vehicle model

\[a = \frac{4\mu F_n - C_d v^2}{M} \]
\[\dot{\omega} = \frac{T_m - h \ast \mu F_n - B\omega}{J} \]

- Only one wheel represented, result multiplied by 4
- Values used from Buick LeSabres used by PATH (Yi ’02)
Collision impact force

Brach collision model

\[F_{Ci} = \begin{cases}
c_{dmp} \dot{\epsilon}_i^b (\epsilon_i - l_{i-1})^c + k(\epsilon_i)^a, & \epsilon_i \leq l_i \\
0, & \epsilon_i > l_i
\end{cases} \]

(9)

\[\epsilon_i = x_i - x_{i-1} \]

(10)

\[c_{dmp} = \begin{cases}
c'_d, & t \leq t_p \\
c_{dmp} \left(\frac{t}{t_p} \right)^d, & t > t_p
\end{cases} \]

(11)

- Based on measured data from low-\(\Delta v\) collisions (Brach '03)
- Values used based on example from Brach
Rajamani Regulation Layer Control

Rajamani controller

\[a_i^* = (1 - C_1)\ddot{x}_{i-1} + C_1\ddot{x}_l - \left(2\zeta - C_1 \left(\zeta + \sqrt{\zeta^2 - 1}\right)\right)\omega_n\dot{\epsilon}_i \tag{12} \]
\[- C_1 \left(\zeta + \sqrt{\zeta^2 - 1}\right)\omega_n(\dot{x}_i - \dot{x}_l) - \omega_n^2\epsilon_i, \tag{13} \]
\[\epsilon_i = x_{i-1} - x_i - l_{i-1} + H^* \tag{14} \]

- Leader and preceding vehicle acceleration and velocity required (Rajamani ’00)
- Design parameters provided for weighting leader information, controller bandwidth, and damping
- Referenced over 50 times on IEEEXplore
Choi Regulation Layer Control

Choi controller

\[a^*_i = \ddot{x}_{i-1} - 2\zeta \omega_n \dot{\epsilon}_i - \omega_n^2 \epsilon_i, \quad (15) \]
\[\epsilon_i = x_{i-1} - x_i - l_{i-1} + H^* \quad (16) \]

- Controller inspired by stochastic analysis of emergency brake scenario (Choi '01)
- Leader information less useful if other vehicles are in brake saturation ahead
- Implemented by setting leader information weight zero
- Proper implementation breaks into “subplatoons”
Preceding Acceleration Regulation Layer Control

Preceding acceleration controller

\[a_i^* = \ddot{x}_{i-1} \] (17)

- Also inspired by Choi ’01
- Only uses preceding vehicle acceleration
- Very susceptible to communication errors ×
Preceding Acceleration with Headway Regulation Layer Control

Preceding acceleration with headway (PAH) controller

\[a_i^* = \ddot{x}_{i-1} + \epsilon, \quad (18) \]
\[\epsilon_i = x_{i-1} - x_i - l_{i-1} + H^* \quad (19) \]

- A variant of the preceding acceleration controller
Uncoordinated Regulation Layer Control

Uncoordinated controller

\[a_i^* = a_{\text{emergency}} + \epsilon, \quad (20) \]
\[\epsilon_i = x_{i-1} - x_i - l_{i-1} + H^* \quad (21) \]

- Each vehicle tries to maintain previously determined acceleration and separation
- No inter-vehicle communication after emergency initiated (headway from sensor)
Masses for Full Platoon

- Mean 1707kg, standard deviation 80kg
- Standard deviation corresponds to distribution between “strict” and “loose” distributions

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Random (kg)</th>
<th>Heavy Rear (kg)</th>
<th>Heavy Lead (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1750.0</td>
<td>1750.0</td>
<td>1853.7</td>
</tr>
<tr>
<td>2</td>
<td>1853.7</td>
<td>1526.3</td>
<td>1750.0</td>
</tr>
<tr>
<td>3</td>
<td>1526.3</td>
<td>1776.0</td>
<td>1526.3</td>
</tr>
<tr>
<td>4</td>
<td>1776.0</td>
<td>1732.5</td>
<td>1776.0</td>
</tr>
<tr>
<td>5</td>
<td>1732.5</td>
<td>1853.7</td>
<td>1732.5</td>
</tr>
</tbody>
</table>
Results of heaviest-in-rear platoon in emergency brake scenario using PAH controller
Performance with Five Vehicles

Results of heaviest-in-rear platoon in emergency brake scenario using PAH controller