Software-Defined Radio Direction of Arrival Analysis

Project: A portable system that finds and displays direction of arrival (DOA) data.

The Source Location Problem: Can we locate an electromagnetic (EM) source using an array of antennas?

Where R is a covariance matrix of our samples, and w is a steering vector:

$$\max w^H R w$$

$$\text{s.t. } w^H w = 1$$

This results in the following steps for finding the DoA:
1. Calculate covariance matrix
2. Find maximum eigenvalue
3. Return the argument of the eigenvector

Calibration Method
- Coherent receivers were used to eliminate frequency offsets.
- Cross correlation is used to correct for initialization time delays.
- Broadside calibration is used to resolve initial phase offsets.

Acknowledgements
Dr. Todd Moon Dana Sorensen Mike Gross Dave Mahoney Donald Cripps Jolynne Berret