Software Defined Radio for Communication Between CubeSats

Abstract
Cube satellites, or CubeSats, are small satellites that have become increasingly common for academic, amateur, commercial, and scientific applications over the past five to ten years. There is potential for CubeSats to be deployed in swarms and clusters, and a need for communication between satellites in these missions.

The purpose of this project is to design and demonstrate proof-of-concept for a Software Defined Radio (SDR) for communication between CubeSats. The preliminary design has focused on two main components: electrical and software design of the radio, and the mechanical packaging that will encase the radio chip-set and mount within the satellite.

Results and Conclusion
The results of this project yielded working simulations of the complete software design, working HDL code for implementation on an FPGA, and a fully machined metal packaging prototype.

This project detailed the design for a software defined radio capable of transmitting and receiving images for use in communication between CubeSats. The first phase included the software design of the radio, including a modulator and demodulator with timing and phase error detection and recovery, implementation on an FPGA, and design of the mechanical packaging.

The project will be continued in subsequent phases by students in the design course to create a working, packaged prototype for Harris Corporation. These phases will include custom design of a PCB, further development and testing of the software and user interface, and the final packaging.

References

System Overview
![Image 1: System Overview]

<table>
<thead>
<tr>
<th>SDR System</th>
<th>Functional Diagrams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Input</td>
<td>FPGA</td>
</tr>
<tr>
<td>Outgoing Waveform</td>
<td>Timing Error Detector</td>
</tr>
<tr>
<td>Incoming Waveform</td>
<td>Decision</td>
</tr>
<tr>
<td>Transmitter</td>
<td>Phase Error Detector</td>
</tr>
<tr>
<td>Receiver</td>
<td>Sin/Cos Lookup Table</td>
</tr>
<tr>
<td>Image Output</td>
<td>Phase Recovery</td>
</tr>
</tbody>
</table>

Mechanical Packaging

- Hardware components:
 - Analog Devices AD9361 RFIC chip
 - Xilinx ZYNC-7000 FPGA development board (ZC706)
 - Operate at variable frequencies: 70 MHz to 6 GHz (RF range)
 - Transmit and receive at variable data rates: 100 Kbps to 20 Mbps
 - Bit error rate at or below \(10^{-6}\)
 - Power consumption less than 4 watts
 - Use QPSK modulation scheme
 - Maintain temperature of electronic components between -40°C and 85°C
 - Withstand steady state loads of 8g
 - Withstand static and dynamic loads of 60g
 - Meet random vibration qualifications in GFSC Standard 7000
 - Have max. dimensions of 100 mm by 100 mm by 50 mm
 - Have max. mass of 0.3 kg

Results and Conclusion
The results of this project yielded working simulations of the complete software design, working HDL code for implementation on an FPGA, and a fully machined metal packaging prototype.

This project detailed the design for a software defined radio capable of transmitting and receiving images for use in communication between CubeSats. The first phase included the software design of the radio, including a modulator and demodulator with timing and phase error detection and recovery, implementation on an FPGA, and design of the mechanical packaging.

The project will be continued in subsequent phases by students in the design course to create a working, packaged prototype for Harris Corporation. These phases will include custom design of a PCB, further development and testing of the software and user interface, and the final packaging.

References

Special Thanks to:
- Don Cripps
- Jolynne Berrett
- Jake Gunther
- Reggie Smith
- Steve Meeker
- Heidi Harper

Arden Barnes, MAE
ardenbarnes@aggiemail.usu.edu

Tia Bradley, EE
tia.bradley@aggiemail.usu.edu

Caleb Young, EE
caleb.young@aggiemail.usu.edu

Emily Clark Young, EE
emily.clark314@aggiemail.usu.edu

Tyler Gardner, MAE
tyler.j.gardner@aggiemail.usu.edu

Sarah Watkins, EE
sarah.watkins@aggiemail.usu.edu

Tia Bradley, EE
tia.bradley@aggiemail.usu.edu

Caleb Young, EE
caleb.young@aggiemail.usu.edu

Emily Clark Young, EE
emily.clark314@aggiemail.usu.edu

Harris

Utah State University
Electrical & Computer Engineering